Importance: Large amounts of optical coherence tomographic (OCT) data of diabetic macular edema (DME) are acquired, but many morphologic features have yet to be identified and quantified.
Objective: To examine the volumetric change of intraretinal fluid (IRF) and subretinal fluid (SRF) in DME during anti-vascular endothelial growth factor treatment using deep learning algorithms.
Design, Setting, And Participants: This post hoc analysis of a randomized clinical trial, the Diabetic Retinopathy Clinical Research Network (protocol T), assessed 6945 spectral-domain OCT volume scans of 570 eyes from 570 study participants with DME. The original trial was performed from August 21, 2012, to October 18, 2018. This analysis was performed from December 7, 2017, to January 15, 2020.
Interventions: Participants were treated according to a predefined, standardized protocol with aflibercept, ranibizumab, or bevacizumab with or without deferred laser.
Main Outcomes And Measures: The association of treatment with IRF and SRF volumes and best-corrected visual acuity (BCVA) during 12 months using deep learning algorithms.
Results: Among the 570 study participants (302 [53%] male; 369 [65%] white; mean [SD] age, 43.4 [12.6] years), the mean fluid volumes in the central 3 mm were 448.6 nL (95% CI, 412.3-485.0 nL) of IRF and 36.9 nL (95% CI, 27.0-46.7 nL) of SRF at baseline and 161.2 nL (95% CI, 135.1-187.4 nL) of IRF and 4.4 nL (95% CI, 1.7-7.1 nL) of SRF at 12 months. The presence of SRF at baseline was associated with a worse baseline BCVA Early Treatment Diabetic Retinopathy Study (ETDRS) score of 63.2 (95% CI, 60.2-66.1) (approximate Snellen equivalent of 20/63 [95% CI, 20/50-20/63]) in eyes with SRF vs 66.9 (95% CI, 65.7-68.1) (approximate Snellen equivalent, 20/50 [95% CI, 20/40-20/50]) without SRF (P < .001) and a greater gain in ETDRS score (0.5; 95% CI, 0.3-0.8) every 4 weeks during follow-up in eyes with SRF at baseline vs 0.4 (95% CI, 0.3-0.5) in eyes without SRF at baseline (P = .02) when adjusted for baseline BCVA. Aflibercept was associated with greater reduction of IRF volume compared with bevacizumab after the first injection (difference, 79.8 nL; 95% CI, 5.3-162.5 nL; P < .001) and every 4 weeks thereafter (difference, 10.4 nL; 95% CI, 0.7-20.0 nL; P = .004). Ranibizumab was associated with a greater reduction of IRF after the first injection compared with bevacizumab (difference, 75.2 nL; 95% CI, 1.4-154.7 nL; P < .001).
Conclusions And Relevance: Automated segmentation of fluid in DME revealed that the presence of SRF was associated with lower baseline BCVA but with good response to anti-vascular endothelial growth factor therapy. These automated spectral-domain OCT analyses may be used clinically to assess anatomical change during therapy.
Trial Registration: ClinicalTrials.gov Identifier: NCT01627249.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378869 | PMC |
http://dx.doi.org/10.1001/jamaophthalmol.2020.2457 | DOI Listing |
Appl Neuropsychol Adult
January 2025
Faculty Xavier Institute of Engineering, Mahim, India.
In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.
Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.
View Article and Find Full Text PDFJMIR Form Res
January 2025
Department of Public Health, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan, 81 562-93-2476, 81 562-93-3079.
Background: Estimating the prevalence of schizophrenia in the general population remains a challenge worldwide, as well as in Japan. Few studies have estimated schizophrenia prevalence in the Japanese population and have often relied on reports from hospitals and self-reported physician diagnoses or typical schizophrenia symptoms. These approaches are likely to underestimate the true prevalence owing to stigma, poor insight, or lack of access to health care among respondents.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC 27101, United States.
Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!