Spermatogenesis is an essential process for producing sperm cells. Reproductive strategy is successfully evolved for a species to adapt to a certain ecological system. However, roles of newly evolved genes in testis autophagy remain unclear. In this study, we found that a newly evolved gene srag (Sox9-regulated autophagy gene) plays an important role in promoting autophagy in testis in the lineage of the teleost Monopterus albus. The gene integrated into an interaction network through a two-way strategy of evolution, via Sox9-binding in its promoter and interaction with Becn1 in the coding region. Its promoter region evolved a cis element for binding of Sox9, a transcription factor for male sex determination. Both in vitro and in vivo analyses demonstrated that transcription factor Sox9 could bind to and activate the srag promoter. Its coding region acquired ability to interact with key autophagy initiation factor Becn1 via the conserved C-terminal, indicating that srag integrated into preexisting autophagy network. Moreover, we determined that Srag enhanced autophagy by interacting with Becn1. Notably, srag transgenic zebrafish revealed that Srag exerted the same function by enhancing autophagy through the Srag-Becn1 pathway. Thus, the new gene srag regulated autophagy in testis by integrated into preexisting autophagy network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782868PMC
http://dx.doi.org/10.1093/molbev/msaa195DOI Listing

Publication Analysis

Top Keywords

preexisting autophagy
12
autophagy
11
srag
8
newly evolved
8
gene srag
8
autophagy testis
8
coding region
8
transcription factor
8
integrated preexisting
8
autophagy network
8

Similar Publications

Background/objectives: The avascular nature of the follicle creates a hypoxic microenvironment, establishing a niche where granulosa cells (GCs) rely on glycolysis to produce energy in the form of lactate (L-lactate). Autophagy, an evolutionarily conserved stress-response process, involves the formation of autophagosomes to encapsulate intracellular components, delivering them to lysosomes for degradation. This process plays a critical role in maintaining optimal follicular development.

View Article and Find Full Text PDF

Doxorubicin or Epirubicin Versus Liposomal Doxorubicin Therapy-Differences in Cardiotoxicity.

Cardiovasc Toxicol

January 2025

Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.

Doxorubicin (DOX) is an important drug used in the treatment of many malignancies. Unfortunately DOX causes various side effects, with cardiotoxicity being the most characteristic. Risk factors for DOX induced cardiotoxicity (DIC) include cumulative dose of DOX, preexisting cardiovascular diseases, dyslipidemia, diabetes, smoking, along with the use of other cardiotoxic agents.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

The endoplasmic reticulum as a cradle for virus and extracellular vesicle secretion.

Trends Cell Biol

December 2024

Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS UMR9004, Université Montpellier, Montpellier, France. Electronic address:

Extracellular vesicles (EVs) are small membranous carriers of protein, lipid, and nucleic acid cargoes and play a key role in intercellular communication. Recent work has revealed the previously under-recognized participation of endoplasmic reticulum (ER)-associated proteins (ERAPs) during EV secretion, using pathways reminiscent of viral replication and secretion. Here, we present highlights of the literature involving ER/ERAPs in EV biogenesis and propose mechanistic parallels with ERAPs exploited during viral infections.

View Article and Find Full Text PDF

AMP kinase: A promising therapeutic drug target for post-COVID-19 complications.

Life Sci

December 2024

Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia; Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India.

The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in severe respiratory issues and persistent complications, particularly affecting glucose metabolism. Patients with or without pre-existing diabetes often experience worsened symptoms, highlighting the need for innovative therapeutic approaches. AMPK, a crucial regulator of cellular energy balance, plays a pivotal role in glucose metabolism, insulin sensitivity, and inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!