Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Strength and fatigue life are essential parameters of pavement structure design. To accurately determine the pavement structure resistance of rubber asphalt mixture, the strength tests at various temperatures, loading rate, and fatigue tests at different stress levels were conducted in this research. Based on the proposed experiments, the change law of rubber asphalt mixture strength with different temperatures and loading rates was revealed. The phenomenological fatigue equation of rubber asphalt mixture was established. The genetic algorithm optimized backpropagation neural network (GA-BPNN) is highly reliable for optimizing production processes in civil engineering, and it has a remarkable application effect. A GA-BPNN strength and fatigue life prediction model was created in this study. The reliability of the prediction model was verified through experiments. The results showed that the rubber asphalt mixture strength decreases and increases with the increase of temperature and loading rate, respectively. The goodness of fit of the rubber asphalt mixture strength and fatigue life prediction model based on the GA-BPNN could reach 0.989 and 0.998, respectively. The indicators of the fatigue life prediction model are superior to the conventional phenomenological fatigue equation model. The GA-BPNN provides an effective method for predicting the rubber asphalt mixture strength and fatigue life, which significantly improves the accuracy of the resistance design of the rubber asphalt pavement structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435730 | PMC |
http://dx.doi.org/10.3390/ma13153325 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!