How to Build a Biological Machine Using Engineering Materials and Methods.

Biomimetics (Basel)

Space Exploration Engineering Group, Department of Mechanical & Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada.

Published: July 2020

We present work in 3D printing electric motors from basic materials as the key to building a self-replicating machine to colonise the Moon. First, we explore the nature of the biological realm to ascertain its essence, particularly in relation to the origin of life when the inanimate became animate. We take an expansive view of this to ascertain parallels between the biological and the manufactured worlds. Life must have emerged from the available raw material on Earth and, similarly, a self-replicating machine must exploit and leverage the available resources on the Moon. We then examine these lessons to explore the construction of a self-replicating machine using a universal constructor. It is through the universal constructor that the actuator emerges as critical. We propose that 3D printing constitutes an analogue of the biological ribosome and that 3D printing may constitute a universal construction mechanism. Following a description of our progress in 3D printing motors, we suggest that this engineering effort can inform biology, that motors are a key facet of living organisms and illustrate the importance of motors in biology viewed from the perspective of engineering (in the Feynman spirit of "what I cannot create, I cannot understand").

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7558640PMC
http://dx.doi.org/10.3390/biomimetics5030035DOI Listing

Publication Analysis

Top Keywords

self-replicating machine
12
universal constructor
8
build biological
4
machine
4
biological machine
4
machine engineering
4
engineering materials
4
materials methods
4
methods work
4
printing
4

Similar Publications

Life sets off a cascade of machines.

Proc Natl Acad Sci U S A

January 2025

Center for Physics and Biology, Rockefeller University, New York, NY 10065.

Life is invasive, occupying all physically accessible scales, stretching between almost nothing (protons, electrons, and photons) and almost everything (the whole biosphere). Motivated by seventeenth-century insights into this infinity, this paper proposes a language to discuss life as an infinite double cascade of machines making machines. Using this simplified language, we first discuss the micro-cascade proposed by Leibniz, which describes how the self-reproducing machine of the cell is built of smaller submachines down to the atomic scale.

View Article and Find Full Text PDF

iDNA-ITLM: An interpretable and transferable learning model for identifying DNA methylation.

PLoS One

October 2024

School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China.

In this study, from the perspective of image processing, we propose the iDNA-ITLM model, using a novel data enhance strategy by continuously self-replicating a short DNA sequence into a longer DNA sequence and then embedding it into a high-dimensional matrix to enlarge the receptive field, for identifying DNA methylation sites. Our model consistently outperforms the current state-of-the-art sequence-based DNA methylation site recognition methods when evaluated on 17 benchmark datasets that cover multiple species and include three DNA methylation modifications (4mC, 5hmC, and 6mA). The experimental results demonstrate the robustness and superior performance of our model across these datasets.

View Article and Find Full Text PDF

DigiHive: Artificial Chemistry Environment for Modeling of Self-Organization Phenomena.

Artif Life

May 2023

Polish Naval Academy, Faculty of Mechanical and Electrical Engineering.

The article presents the DigiHive system, an artificial chemistry simulation environment, and the results of preliminary simulation experiments leading toward building a self-replicating system resembling a living cell. The two-dimensional environment is populated by particles that can bond together and form complexes of particles. Some complexes can recognize and change the structures of surrounding complexes, where the functions they perform are encoded in their structure in the form of Prolog-like language expressions.

View Article and Find Full Text PDF

In this work, the nucleic acid detection of SARS-Cov-2 is extended to protein markers of the virus, utilizing bacteriophage. Specifically, the phage display technique enables the main protease of SARS-Cov-2 to control the self-replication of m13 phage, so that the presence of the viral protease can be amplified by phage replication as the first round of signal amplification. Then, the genome of replicated phage can be detected using polymer chain reaction (PCR), as the second round of signal amplification.

View Article and Find Full Text PDF

α-Synuclein Fibrils as Penrose Machines: A Chameleon in the Gear.

Biomolecules

March 2022

CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France.

In 1957, Lionel Penrose built the first man-made self-replicating mechanical device and illustrated its function in a series of machine prototypes, prefiguring our current view of the genesis and the proliferation of amyloid fibrils. He invented and demonstrated, with the help of his son Roger, the concepts that decades later, would become the fundamentals of prion and prion-like neurobiology: nucleation, seeding and conformational templating of monomers, linear polymer elongation, fragmentation, and spread. He published his premonitory discovery in a movie he publicly presented at only two conferences in 1958, a movie we thus reproduce here.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!