Production of Marine Probiotic Bacteria in a Cost-Effective Marine Media Based on Peptones Obtained from Discarded Fish By-Products.

Microorganisms

Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.

Published: July 2020

The industrial production of marine bacteria with probiotic properties is limited by the excessive cost of the culture media adequate for their growth. The present work aimed to study the suitability of 30 marine media formulated with nitrogen sources (fish peptones) from different fish discards and seawater, for the growth of two marine probiotic bacteria (MPB), namely sp. and . These fish peptones were produced from several discarded fish and by-products (heads, skins, and whole individuals of megrim, mackerel, gurnard, hake, etc.). In all cultivations, no significant differences were found on cell viability when the microorganism grew on commercial or alternative media. In relation to the biomass production, the growth of sp. on waste media was commonly similar or a 20% lower than observed in the control cultures. For , various peptones (skin peptones of pouting and blue whiting) showed even higher productive ability than commercial peptones. An initial economical evaluation revealed that low-cost media reduced until 120 times the cost of production of MPB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464406PMC
http://dx.doi.org/10.3390/microorganisms8081121DOI Listing

Publication Analysis

Top Keywords

production marine
8
marine probiotic
8
probiotic bacteria
8
marine media
8
discarded fish
8
fish by-products
8
fish peptones
8
media
6
peptones
6
fish
5

Similar Publications

Songbird reproductive success can decline from consuming mercury-contaminated aquatic insects, but assessments of hydrologic conditions influencing songbird mercury exposure are lacking. We monitored breast feather total mercury (THg) concentrations and reproductive success in the U.S.

View Article and Find Full Text PDF

Generation of glucosylantimycins by heterologous expression of a promiscuous glycosyltransferase in a deepsea-derived .

Nat Prod Res

January 2025

Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.

Antimycins are a class of depsipeptide compounds that exhibit diverse bioactivities. However, their potential clinical applications are hampered by high cell toxicities. Glycosylation usually has profound impacts on the physicochemical properties, bioactivities and toxicities of natural products.

View Article and Find Full Text PDF

Peptidomics & Molecular Simulation-Based Specific Screening of Antifreeze Peptides from Scale and the Action Mechanism.

J Agric Food Chem

January 2025

College of Chemical Engineering, College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, P.R.China.

This study aims to explore the cryoprotective mechanisms of food-derived hydrolyzed peptides and develop novel cryoprotectants to enhance the quality of frozen foods. scale antifreeze peptides (Ej-AFP) were prepared using enzymatic hydrolysis, which had a 4-fold increase in protection efficiency for surimi compared to traditional cryoprotectants. Furthermore, Ej-AFP was able to control 63.

View Article and Find Full Text PDF

This study investigated the effects of fine-sized pork bone biochar particles on remediating As-contaminated soil and alleviating associated phytotoxicity to rice in 50-day short-term and 120-day full-life-cycle pot experiments. The addition of micro-nanostructured pork bone biochar (BC) pyrolyzed at 400 and 600 °C (BC400 and BC600) significantly increased the As-treated shoot and root fresh weight by 24.4-77.

View Article and Find Full Text PDF

Efficient synthesis of dihydronaphthalenes cerium-catalyzed annulation of 1-alkoxy substituted 1-isochromenes with cinnamic acids.

Org Biomol Chem

January 2025

Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.

Dihydronaphthalenes play a crucial role in bioactive natural products and new drug discovery, and efficient and economic strategies to build them are needed. Herein, we disclose a highly efficient method to prepare dihydronaphthalenes a cerium-catalyzed cycloaddition of 1-isochromenes with cinnamic acids. This newly developed method not only features a broad and low-cost substrate scope and mild conditions but also exhibits very high functional group tolerance, including hydroxyl, borate ester and ester group substituents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!