The aging process starts directly after birth and lasts for the entire lifespan; it manifests itself with a decline in an organism's ability to adapt and is linked to the development of age-related diseases that eventually lead to premature death. This review aims to explore how microRNAs (miRNAs) are involved in skin functioning and aging. Recent evidence has suggested that miRNAs regulate all aspects of cutaneous biogenesis, functionality, and aging. It has been noted that some miRNAs were down-regulated in long-lived individuals, such as let-7, miR-17, and miR-34 (known as longevity-related miRNAs). They are conserved in humans and presumably promote lifespan prolongation; conversely, they are up-regulated in age-related diseases, like cancers. The analysis of the age-associated cutaneous miRNAs revealed the increased expression of miR-130, miR-138, and miR-181a/b in keratinocytes during replicative senescence. These miRNAs affected cell proliferation pathways via targeting the p63 and Sirtuin 1 mRNAs. Notably, miR-181a was also implicated in skin immunosenescence, represented by the Langerhans cells. Dermal fibroblasts also expressed increased the levels of the biomarkers of aging that affect telomere maintenance and all phases of the cellular life cycle, such as let-7, miR-23a-3p, 34a-5p, miR-125a, miR-181a-5p, and miR-221/222-3p. Among them, the miR-34 family, stimulated by ultraviolet B irradiation, deteriorates collagen in the extracellular matrix due to the activation of the matrix metalloproteinases and thereby potentiates wrinkle formation. In addition to the pro-aging effects of miRNAs, the plausible antiaging activity of miR-146a that antagonized the UVA-induced inhibition of proliferation and suppressed aging-related genes (e.g., , , and ) through targeting Smad4 has also been noticed. Nevertheless, the role of miRNAs in skin aging is still not fully elucidated and needs to be further discovered and explained.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432402 | PMC |
http://dx.doi.org/10.3390/ijms21155281 | DOI Listing |
Cureus
December 2024
Family Medicine, Rowan-Virtua School of Osteopathic Medicine, Stratford, USA.
Introduction The COVID-19 pandemic sparked an interest in skincare with the closure of spas and salons. Skincare, one of TikTok's most popular dermatology-related hashtags, received hundreds of millions of views. The American Academy of Dermatology (AAD) shared facial cleansing recommendations; however, how many people follow them is unclear.
View Article and Find Full Text PDFAging Cell
January 2025
Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea.
As emerging therapeutic strategies for aging and age-associated diseases, various biochemical approaches have been developed to selectively remove senescent cells, but how physical stimulus influences senescent cells and its possible application in senolytic therapy has not been reported yet. Here we developed a physical method to selectively stimulate senescent cells via low-intensity pulsed ultrasound (LIPUS) treatment. LIPUS stimulation did not affect the cell cycle, but selectively enhanced secretion of specific cytokines in senescent cells, known as the senescence-associated secretory phenotype (SASP), resulting in enhanced migration of monocytes/macrophages and upregulation of phagocytosis of senescent cells by M1 macrophage.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
In vitro skin aging models represent a valuable tool for the study of age-related pathologies and potential treatments. However, the currently available models do not adequately represent the complex microenvironment of the dermis since they generally focus on cutaneous cellular senescence, rather than the full range of factors that contribute to the aging process, such as structural and compositional alteration of the dermal extracellular matrix. The following protocol describes the extraction and characterization of human adult extracellular matrix scaffolds for use in in vitro aging models.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea.
Microfocused ultrasound (MFU) and (MRF) are non-invasive modalities widely used for skin rejuvenation and are often combined with injectables, including neuromodulators and soft tissue fillers. However, large-scale, long-term safety data on such combination therapies are lacking. To address this gap, we conducted a retrospective chart review at two private practice dermatology clinics in South Korea from June 2005 to December 2023.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Dermatology, Shenzhen Key Discipline of Dermatology, Shenzhen Key Laboratory for Translational Medicine of Dermatology, Biomedical Research Institute, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
Bacterial skin diseases are a category of inflammatory skin conditions caused by bacterial infections, which impose a significant global disease burden. However, they have not been well assessed or predicted on a global scale. It is necessary to update the estimates and forecast future trends of the global burden of bacterial skin diseases to evaluate the impact of past healthcare policies and to provide guidance and information for new national and international healthcare strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!