Polymer-drug conjugates have several advantages in controlled drug delivery to inflammation as they can accumulate and release the drug in inflamed tissues or cells, which could circumvent the shortcomings of current therapy. To improve the therapeutic potential of polymer-drug conjugates in joint inflammation, we synthesized polymer conjugates based on -(2-hydroxypropyl) methacrylamide) copolymers labeled with a near-infrared fluorescent dye and covalently linked to the anti-inflammatory drug dexamethasone (DEX). The drug was bound to the polymer via a spacer enabling pH-sensitive drug release in conditions mimicking the environment inside inflammation-related cells. An in vivo murine model of adjuvant-induced arthritis was used to confirm the accumulation of polymer conjugates in arthritic joints, which occurred rapidly after conjugate application and remained until the end of the experiment. Several tested dosage schemes of polymer DEX-OPB conjugate showed superior anti-inflammatory efficacy. The highest therapeutic effect was obtained by repeated i.p. application of polymer conjugate (3 × 1 mg/kg of DEX eq.), which led to a reduction in the severity of inflammation in the ankle by more than 90%, compared to 40% in mice treated with free DEX.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465548PMC
http://dx.doi.org/10.3390/pharmaceutics12080700DOI Listing

Publication Analysis

Top Keywords

polymer-drug conjugates
8
polymer conjugates
8
polymer
6
drug
5
polymer nanomedicines
4
nanomedicines ph-sensitive
4
ph-sensitive release
4
release dexamethasone
4
dexamethasone localized
4
localized treatment
4

Similar Publications

The study is dedicated to the synthesis, rheological properties, hemocompatibility, and further modification of water-soluble derivatives of sodium alginate containing fragments of ethylenediamine (Alg-EDA). Alg-EDA with an equal ratio of amide/amine groups and varying degrees of substitution were synthesized by the carbodiimide method. The influence of the molecular weight of Alg-EDA on the attachment of bioactive molecules such as hydroxybenzoic and ferulic acids was determined.

View Article and Find Full Text PDF

Poly(vinyl alcohol) potentiating an inert d-amino acid-based drug for boron neutron capture therapy.

J Control Release

January 2025

Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan. Electronic address:

Since the discovery of d-amino acids, they have been considered inactive and have not been used as potent drugs. Here, we report that simple mixing with poly(vinyl alcohol) (PVA) unleashed latent potentials of d-amino acids in boron neutron capture therapy (BNCT). PVA formed boronate esters with seemingly useless boronated d-amino acids and induced tumor-associated amino acid transporter-superselective internalization and prolonged intracellular retention, accomplishing complete cure of tumors.

View Article and Find Full Text PDF

Nanotheranostics, an amalgamation of therapeutic and diagnostic capabilities at the nanoscale, is revolutionizing personalized medicine. Polymer-drug conjugates (PDCs) stand at the forefront of this arena, offering a multifaceted approach to treat complex diseases such as cancer. This review explores the recent advancements in PDCs, highlighting their design principles, working mechanisms, and the therapeutic applications.

View Article and Find Full Text PDF

A photocrosslinkable and anti-inflammatory hydrogel of loxoprofen-conjugated chitosan methacrylate.

J Mater Chem B

December 2024

Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Department of Biomedical Engineering, Donghua University, Shanghai 201620, P. R. China.

Article Synopsis
  • Researchers developed an injectable hydrogel using chitosan as a carrier for delivering nonsteroidal anti-inflammatory drugs, specifically loxoprofen, which improved its water solubility.
  • The hydrogel, modified through photopolymerization, showed strong cytocompatibility, effectively reducing inflammatory responses in macrophages and in a rat model.
  • The findings indicate that chitosan-drug conjugates can be used to create effective methacrylate hydrogels for sustained drug release and targeted inflammation treatment.
View Article and Find Full Text PDF

Drug conjugates crosslinked bioresponsive hydrogel for combination therapy of diabetic wound.

J Control Release

December 2024

School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, PR China. Electronic address:

Basic fibroblast growth factor (bFGF) has proved to be effective for wound healing, yet its effectiveness is extremely retarded in diabetic wounds due to the severe oxidative stress in wound beds. To solve this issue, herein a novel combination therapy of bFGF and N-acetylcysteine (NAC, antioxidant) was devised for improved diabetic wound repair. To avoid rapid loss of both drugs in the wound beds, a bioresponsive hydrogel (bFGF-HSPP-NAC) was engineered by incorporating bFGF and NAC into polymer-drug conjugates (HSPP) via thiol-disulfide exchange reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!