The adsorption of phenol, 2-, 3-, 4-chlorophenol, 2-, 4-dichlorophenol and 2-, 4-, 6-trichloro-phenol on halloysite nanotubes modified with hexadecyltrimethylammonium bromide (HDTMA/halloysite nanocomposite) was investigated in this work by inverse liquid chromatography methods. Morphological and structural changes of the HDTMA/halloysite nanocomposite were characterized by scanning and transmission electron microscopy (SEM, TEM), Fourier-transform infrared spectrometry (FT-IR) and the low-temperature nitrogen adsorption method. Specific surface energy heterogeneity profiles and acid base properties of halloysite and HDTMA/halloysite nanocomposite have been determined with the inverse gas chromatography method. Inverse liquid chromatography methods: the Peak Division and the Breakthrough Curves Methods were used in adsorption experiments to determine adsorption parameters. The obtained experimental adsorption data were well represented by the Langmuir multi-center adsorption model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436260PMC
http://dx.doi.org/10.3390/ma13153309DOI Listing

Publication Analysis

Top Keywords

hdtma/halloysite nanocomposite
12
adsorption phenol
8
halloysite nanotubes
8
inverse liquid
8
liquid chromatography
8
chromatography methods
8
adsorption
7
phenol chlorophenols
4
chlorophenols hdtma
4
hdtma modified
4

Similar Publications

The adsorption of phenol, 2-, 3-, 4-chlorophenol, 2-, 4-dichlorophenol and 2-, 4-, 6-trichloro-phenol on halloysite nanotubes modified with hexadecyltrimethylammonium bromide (HDTMA/halloysite nanocomposite) was investigated in this work by inverse liquid chromatography methods. Morphological and structural changes of the HDTMA/halloysite nanocomposite were characterized by scanning and transmission electron microscopy (SEM, TEM), Fourier-transform infrared spectrometry (FT-IR) and the low-temperature nitrogen adsorption method. Specific surface energy heterogeneity profiles and acid base properties of halloysite and HDTMA/halloysite nanocomposite have been determined with the inverse gas chromatography method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!