Self-localization enables a system to navigate and interact with its environment. In this study, we propose a novel sparse semantic self-localization approach for robust and efficient indoor localization. "Sparse semantic" refers to the detection of sparsely distributed objects such as doors and windows. We use sparse semantic information to self-localize on a human-readable 2D annotated map in the sensor model. Thus, compared to previous works using point clouds or other dense and large data structures, our work uses a small amount of sparse semantic information, which efficiently reduces uncertainty in real-time localization. Unlike complex 3D constructions, the annotated map required by our method can be easily prepared by marking the approximate centers of the annotated objects on a 2D map. Our approach is robust to the partial obstruction of views and geometrical errors on the map. The localization is performed using low-cost lightweight sensors, an inertial measurement unit and a spherical camera. We conducted experiments to show the feasibility and robustness of our approach.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435920PMC
http://dx.doi.org/10.3390/s20154128DOI Listing

Publication Analysis

Top Keywords

sparse semantic
16
robust efficient
8
efficient indoor
8
indoor localization
8
spherical camera
8
approach robust
8
annotated map
8
localization
4
sparse
4
localization sparse
4

Similar Publications

ARCH: Large-scale knowledge graph via aggregated narrative codified health records analysis.

J Biomed Inform

January 2025

Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, 02115, MA, USA; VA Boston Healthcare System, 150 S Huntington Ave, Boston, 02130, MA, USA. Electronic address:

Objective: Electronic health record (EHR) systems contain a wealth of clinical data stored as both codified data and free-text narrative notes (NLP). The complexity of EHR presents challenges in feature representation, information extraction, and uncertainty quantification. To address these challenges, we proposed an efficient Aggregated naRrative Codified Health (ARCH) records analysis to generate a large-scale knowledge graph (KG) for a comprehensive set of EHR codified and narrative features.

View Article and Find Full Text PDF

Contrastive independent subspace analysis network for multi-view spatial information extraction.

Neural Netw

January 2025

College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong, China.

Multi-view classification integrates features from different views to optimize classification performance. Most of the existing works typically utilize semantic information to achieve view fusion but neglect the spatial information of data itself, which accommodates data representation with correlation information and is proven to be an essential aspect. Thus robust independent subspace analysis network, optimized by sparse and soft orthogonal optimization, is first proposed to extract the latent spatial information of multi-view data with subspace bases.

View Article and Find Full Text PDF

Accurate 3D point cloud object detection is crucially important for autonomous driving vehicles. The sparsity of point clouds in 3D scenes, especially for smaller targets like pedestrians and bicycles that contain fewer points, makes detection particularly challenging. To solve this problem, we propose a single-stage voxel-based 3D object detection method, namely PFENet.

View Article and Find Full Text PDF

Convergent-Diffusion Denoising Model for multi-scenario CT Image Reconstruction.

Comput Med Imaging Graph

January 2025

The Department of Computer and Data Science, Case Western Reserve University, Cleveland, OH, USA; The Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

A generic and versatile CT Image Reconstruction (CTIR) scheme can efficiently mitigate imaging noise resulting from inherent physical limitations, substantially bolstering the dependability of CT imaging diagnostics across a wider spectrum of patient cases. Current CTIR techniques often concentrate on distinct areas such as Low-Dose CT denoising (LDCTD), Sparse-View CT reconstruction (SVCTR), and Metal Artifact Reduction (MAR). Nevertheless, due to the intricate nature of multi-scenario CTIR, these techniques frequently narrow their focus to specific tasks, resulting in limited generalization capabilities for diverse scenarios.

View Article and Find Full Text PDF

In this investigation, we delve into the neural underpinnings of auditory processing of Sanskrit verse comprehension, an area not previously explored by neuroscientific research. Our study examines a diverse group of 44 bilingual individuals, including both proficient and non-proficient Sanskrit speakers, to uncover the intricate neural patterns involved in processing verses of this ancient language. Employing an integrated neuroimaging approach that combines functional connectivity-multivariate pattern analysis (fc-MVPA), voxel-based univariate analysis, seed-based connectivity analysis, and the use of sparse fMRI techniques to minimize the interference of scanner noise, we highlight the brain's adaptability and ability to integrate multiple types of information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!