Superconductivity and magnetism are adversarial states of matter. The presence of spontaneous magnetic fields inside the superconducting state is, therefore, an intriguing phenomenon prompting extensive experimental and theoretical research. In this review, we discuss recent experimental discoveries of unconventional superconductors which spontaneously break time-reversal symmetry and theoretical efforts in understanding their properties. We discuss the main experimental probes and give an extensive account of theoretical approaches to understand the order parameter symmetries and the corresponding pairing mechanisms, including the importance of multiple bands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/abaa06 | DOI Listing |
Adv Mater
December 2024
Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India.
Weyl semimetals are a novel class of topological materials with unique electronic structures and distinct properties. HfRhGe stands out as a noncentrosymmetric Weyl semimetal with unconventional superconducting characteristics. Using muon-spin rotation and relaxation (µSR) spectroscopy and thermodynamic measurements, a fully gapped superconducting state is identified in HfRhGe that breaks time-reversal symmetry at the superconducting transition.
View Article and Find Full Text PDFThe increasing demand for controlling electromagnetic waves has led to the construction of a variety of metasurface absorbers with different functionalities. In this Letter, we designed a kind of single-layer metasurfaces with delicately designed hybrid magnetic meta-atoms (HMMAs), which can be operated as perfect absorbers (PAs) for the electromagnetic wave incident at a specified direction, but at the mirror symmetric direction, the nearly total reflection is achieved. This remarkable nonreciprocal phenomenon arises from the time-reversal symmetry (TRS) breaking nature of magnetic surface plasmon as well as the lattice Kerker effect due to the interaction of HMMAs in the single-layer metasurfaces.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
New unconventional compensated magnets with a p-wave spin polarization protected by a composite time-reversal translation symmetry have been proposed in the wake of altermagnets. To facilitate the experimental discovery and applications of these unconventional magnets, we construct an effective analytical model. The effective model is based on a minimal tight-binding model for unconventional p-wave magnets that clarifies the relation to other magnets with p-wave spin-polarized bands.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA.
The statistical mechanics of equilibrium interfaces has been well-established for over a half century. In the past decade, a wealth of observations have made increasingly clear that a new perspective is required to describe interfaces arbitrarily far from equilibrium. In this work, beginning from microscopic particle dynamics that break time-reversal symmetry, we derive the linear interfacial dynamics of coexisting motility-induced phases.
View Article and Find Full Text PDFNat Mater
December 2024
Department of Applied Physics, University of Tokyo, Tokyo, Japan.
Magnetic information is usually stored in ferromagnets, where the ↑ and ↓ spin states are distinguishable due to time-reversal symmetry breaking. These states induce opposite signs of the Hall effect proportional to magnetization, which is widely used for their electrical read-out. By contrast, conventional antiferromagnets with a collinear antiparallel spin configuration cannot host such functions, because of symmetry (time-reversal followed by translation t symmetry) and lack of macroscopic magnetization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!