Water quality monitoring is essential to safeguard human and environmental health. The advent of next-generation sequencing techniques in recent years, which allow a more in-depth study of environmental microbial communities in the environment, could broaden the perspective of water quality monitoring to include impact of faecal pollution bacteria on ecosystem. In this study, 16 S rRNA amplicon sequencing was used to evaluate the impact of wastewater treatment plant (WWTP) effluent on autochthonous microbial communities of a temporary Mediterranean stream characterized by high flow seasonality (from 0.02 m/s in winter to 0.006 m/s in summer). Seven sampling campaigns were performed under different temperatures and streamflow conditions (winter and summer). Water samples were collected upstream (Upper) of the WWTP, the secondary effluent (EF) discharge and 75 m (P75) and 1000 m (P1000) downstream of the WWTP. A total of 5,593,724 sequences were obtained, giving rise to 20,650 amplicon sequence variants (ASV), which were further analysed and classified into phylum, class, family and genus. Each sample presented different distribution and abundance of taxa. Although taxon distribution and abundance differed in each sample, the microbial community structure of P75 resembled that of EF samples, and Upper and P1000 samples mostly clustered together. Alpha diversity showed the highest values for Upper and P1000 samples and presented seasonal differences, being higher in winter conditions of high streamflow and low temperature. Our results suggest the microbial ecology re-establishment, since autochthonous bacterial communities were able to recover from the impact of the WWTP effluent in 1 km. Alpha diversity results indicates a possible influence of environmental factors on the bacterial community structure. This study shows the potential of next-generation sequencing techniques as useful tools in water quality monitoring and management within the climate change scenario.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2020.115254 | DOI Listing |
Sci Rep
December 2024
School of Civil Engineering, Southeast University, Nanjing, 211189, China.
Collapsible loess soils, known for their significant volume reduction upon the wetting, pose critical challenges in the geotechnical engineering. The estimation of the wetting-induced settlement is crucial for the foundation design and the determination of the negative skin friction on the pile. In this paper, a new method is proposed to estimate the wetting induced collapse from the wetting soil-water characteristic curve (SWCC) and the index properties of the loess soils.
View Article and Find Full Text PDFRheumatol Int
December 2024
Chair of Psychiatry and Narcology, Astana Medical University, Astana, Kazakhstan.
Chronic pain and restricted mobility, hallmark features of rheumatic diseases, substantially affect patients' quality of life, often resulting in physical disability and emotional distress. Given the long-term nature of these conditions, there is a growing interest in complementary therapeutic approaches, emphasizing the need to explore non-pharmacological treatments. Hydrotherapy, balneotherapy, and mud therapy have emerged as effective interventions to alleviate pain, reduce inflammation, improve joint mobility, and enhance overall physical and mental well-being.
View Article and Find Full Text PDFSci Rep
December 2024
School of Public Administration, Guangzhou University, Guangzhou, 510006, China.
With the accelerated urbanization and economic development in Northwest China, the efficiency of urban wastewater treatment and the importance of water quality management have become increasingly significant. This work aims to explore urban wastewater treatment and carbon reduction mechanisms in Northwest China to alleviate water resource pressure. By utilizing online monitoring data from pilot systems, it conducts an in-depth analysis of the impacts of different wastewater treatment processes on water quality parameters.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
Lycium barbarum is an important economic crop in the arid region of Northwest China, and the regulation of irrigation and fertilisation is an important way to improve the quality and yield of Lycium barbarum. To explore the effects of water-fertiliser coupling on photosynthesis, quality and yield of Lycium barbarum under irrigation methods based on predicted crop evapotranspiration (ET), ET was calculated via reference evapotranspiration (ET) predicted on the basis of public weather forecasts, and the irrigation water volume was determined as a proportion of this ET. A field experiment was conducted via a completely randomised experimental design with five irrigation water volumes (W0 (100% ET), W1 (90% ET), W2 (80% ET), W3 (70% ET) and W4 (65% ET)) and three fertiliser application rates (high fertiliser (FH), medium fertiliser (FM) and low fertiliser (FL)).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
The presence of antibiotics in the environment is of significant concern due to their adverse effects on aquatic ecosystems. This study provides an assessment of potential ecological risks (RQ) associated with the concentrations of eight antibiotics and antiparasitics (amoxicillin-AMO, azithromycin-AZI, ciprofloxacine-CIP, ofloxacine-OFL, oxfendazole-OXF, lincomycin-LIN, sulfacetamide-SCE and sulfamethoxazole-SME) in the surface water of 13 urban lakes in Hanoi city, Vietnam during the period 2021-2023. The findings revealed considerable variations in the total concentrations of these 8 substances (T), ranging from below the method detection limit (< MDL) to 2240 ng L with an average of 330.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!