It is a known fact that individuals who engaged in delinquent behavior in childhood are more probable to carry on similar behavior in adulthood. If the factors that lead children to involve in delinquency are defined, the risk of dragging children into crime can be detected before they are involved in crime and delinquency can be prevented with appropriate preventive rehabilitation programs, in the early period. However, given that delinquent behavior occurs under the influence of multiple conditions and factors rather than a single risk factor; the need for diagnostic tools to evaluate multiple factors together is obvious. Artificial intelligence-based clinical decision support systems have already been used in the field of psychiatry as well as many other fields of medicine. In this study, we assume that thanks to artificial intelligence-based clinical decision support systems, children and adolescents at risk can be detected before the criminal behavior occurs by addressing certain factors. In this way, we anticipate that it can provide psychiatrists and other experts in the field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mehy.2020.110118DOI Listing

Publication Analysis

Top Keywords

clinical decision
12
decision support
12
delinquent behavior
8
behavior occurs
8
artificial intelligence-based
8
intelligence-based clinical
8
support systems
8
determining probability
4
probability juvenile
4
juvenile delinquency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!