Predictive biomarkers which can diagnose the onset of non-communicable diseases and the associated comorbid conditions are lacking for clinical utility. Highly sensitive and specific biomarkers for early disease detection and risk stratification may provide timely intervention to patients and prevent secondary complications. However, till the time patients are diagnosed, cellular events and biomolecules get active effecting multiple organs at the same time. This series of events lead to disruption in normal functioning of the organs and their coordinative crosstalk, hence, increase in mortality rate of patients. The primary functional molecules of inflammatory pathways are active in NCDs. YKL-40, an anti-apoptotic molecule in inflammatory pathways, is overexpressed in patient fluids in different organs under diseased conditions. We performed a preliminary network analysis to study YKL-40 co-expression with diagnostic markers: TNNT2/I3 (Cardiac Troponin T/I) for cardiovascular diseases, LCN2 (NGAL) and CKM (Creatinine kinase M-type) in acute kidney injury and HbA1c in type-2-diabetes. It is observed that YKL-40 is actively co-expressed and linked with standard diagnostic markers and may be influencing the pathways active in organ crosstalk. The pathways may be regulating the signaling events in patients with non-communicable diseases leading to comorbidities. We, hence, postulate that if YKL-40 and disease specific pathways influenced are clinically utilized, this will provide the foundation of establishing tailored and specific approach in diagnosis and monitoring non-communicable diseases and predict the onset of comorbid conditions due to phenomenon influencing organ cross talks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mehy.2020.110076 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!