Molluscs defend themselves against predation and environmental stressors through the possession of mineralized shells. Mussels are widely used to predict the effects of abiotic factors such as salinity and pH on marine calcifiers in the context of changing ocean conditions. Shell matrix proteins are part of the molecular control regulating the biomineralization processes underpinning shell production. Under changing environmental conditions, differential expression of these proteins leads to the phenotypic plasticity of shells seen in many mollusc species. Low salinity decreases the availability of calcium and inorganic carbon in seawater and consequently energetic constraints often lead to thin, small and fragile shells in Mytilid mussels inhabiting Baltic Sea. To understand how the modulation of shell matrix proteins alters biomineralization, we compared the shell proteomes of mussels living under full marine conditions in the North Sea to those living in the low saline Baltic Sea. Modulation of proteins comprising the Mytilus biomineralization tool kit is observed. These data showed a relative increase in chitin related proteins, decrease in SD-rich, GA-rich shell matrix proteins indicating that altered protein scaffolding and mineral nucleation lead to impaired shell microstructures influencing shell resistance in Baltic Mytilid mussels. Interestingly, proteins with immunity domains in the shell matrix are also found to be modulated. Shell traits such as periostracum thickness, organic content and fracture resistance qualitatively correlates with the modulation of SMPs in Mytilid mussels providing key insights into control of biomineralization at molecular level in the context of changing marine conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.140878 | DOI Listing |
Environ Monit Assess
December 2023
Sección Limnología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
Invasive alien species (IAS) exert a negative impact on native ecosystems and on various human activities. Limnoperna fortunei (Dunker 1857), a sessile mytilid introduced from Asia in the Río de la Plata, demonstrates a high dispersal capacity, growing over other organisms and artificial structures. Understanding its behavior is crucial for developing appropriate control and mitigating its detrimental effects.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2024
California Polytechnic State University, San Luis Obispo, CA 93407, USA.
Sirtuins are a class of NAD-dependent deacylases, with known regulatory roles in energy metabolism and cellular stress responses in vertebrates. Previous work using marine mussels have suggested a similar role in invertebrates, providing a potential mechanism linking food availability and thermal sensitivity in Mytilids. Sirtuin inhibitors affect mussels' recovery from environmental stressors, including acute heat shock and well-fed mussels exposed to sirtuin inhibitors and/or acute heat shock respond differently than poorly fed mussels, at the protein and whole-organism levels.
View Article and Find Full Text PDFSci Rep
December 2022
Division of Ecoscience, Ewha Womans University, Seoul, Republic of Korea.
The mytilid mussel Bathymodiolus thermophilus lives in the deep-sea hydrothermal vent regions due to its relationship with chemosynthetic symbiotic bacteria. It is well established that symbionts reside in the gill bacteriocytes of the mussel and can utilize hydrogen sulfide, methane, and hydrogen from the surrounding environment. However, it is observed that some mussel symbionts either possess or lack genes for hydrogen metabolism within the single-ribotype population and host mussel species level.
View Article and Find Full Text PDFPLoS One
October 2021
Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile.
Active predators obtain energy and nutrients from prey through complex processes in which the energy gained must exceed the energy invested in finding and ingesting the prey. In addition, the amount of energy available will vary with the prey that are selected for consumption. The muricid gastropod Acanthina monodon inhabits rocky shores, where it routinely feeds on the mytilids Semimytilus algosus and Perumytilus purpuratus.
View Article and Find Full Text PDFACS Nano
April 2021
Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.
Protein-based biological materials are important role models for the design and fabrication of next generation advanced polymers. Marine mussels ( spp.) fabricate hierarchically structured collagenous fibers known as byssal threads bottom-up supramolecular assembly of fluid protein precursors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!