Environmental decision-making requires an understanding of complex interacting systems across scales of space and time. A range of statistical methods, evaluation frameworks and modeling approaches have been applied for conducting structured environmental decision-making under uncertainty. Bayesian Decision Networks (BDNs) are a useful construct for addressing uncertainties in environmental decision-making. In this paper, we apply a BDN to decisions regarding fire management to evaluate the general efficacy and utility of the approach in resource and environmental decision-making. The study was undertaken in south-eastern Australia to examine decisions about prescribed burning rates and locations based on treatment and impact costs. Least-cost solutions were identified but are unlikely to be socially acceptable or practical within existing resources; however, the statistical approach allowed for the identification of alternative, more practical solutions. BDNs provided a transparent and effective method for a multi-criteria decision analysis of environmental management problems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2020.110735 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!