Currently, sustainable utilization, including recycling and valorization, is becoming increasingly popular in waste management. Black soldier fly larvae (BSFL) can convert the carbon (C) and nitrogen (N) from organic waste into biomass and improve properties of the substrate to reduce greenhouse gas and NH emissions. In this study, the recycling of C and N and the emissions of greenhouse gas and NH during BSFL bio-treatment of mixtures of pig manure and corncob were investigated under different C/N ratios. The results indicated that initial C/N ratios of feedstock are a crucial parameter affecting the biomass generation of larvae. The BSFL recycled approximately 4.17-6.61% of C and 17.45-23.73% of N from raw materials under different C/N ratios. Cumulative CO, CH, NH, and NO emissions at the different C/N ratios ranging from 15 to 35 were 107.92-151.68, 0.08-0.76, 0.14-1.17, and 0.91-1.18 mg kg, respectively. Compared with conventional composting, BSFL treatment could reduce the total greenhouse gas emissions by over 90%. The study showed that bio-treatment of mixtures of pig manure and corncob with a proper C/N ratio by BSFL could become an avenue to achieve higher nutrient recycling, which is an eco-friendly process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-09909-4DOI Listing

Publication Analysis

Top Keywords

c/n ratios
20
greenhouse gas
16
gas emissions
12
carbon nitrogen
8
emissions c/n
8
black soldier
8
soldier fly
8
larvae bsfl
8
bio-treatment mixtures
8
mixtures pig
8

Similar Publications

The oleaginous yeast is recognized for its remarkable lipid accumulation under nitrogen-limited conditions. However, precise control of microbial lipid production in remains challenging due to the complexity of nutrient media. We developed a two-stage fed-batch fermentation process using a well-defined synthetic medium in a 5-L bioreactor.

View Article and Find Full Text PDF

Lipid Levels and Lung Cancer Risk: Findings from the Taiwan National Data Systems from 2012 to 2018.

J Epidemiol Glob Health

January 2025

Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, No.7, Chung Shan S. Rd., Zhongzheng District, Taipei City, 100225, Taiwan.

Background: Lipids are known to be involved in carcinogenesis, but the associations between lipid profiles and different lung cancer histological classifications remain unknown.

Methods: Individuals who participated in national adult health surveillance from 2012 to 2018 were included. For patients who developed lung cancer during follow-up, a 1:2 control group of nonlung cancer participants was selected after matching.

View Article and Find Full Text PDF

Invasive silver carp () threaten Mississippi River basin ecosystems due to their ability to outcompete native species. Stable carbon (δC) and nitrogen (δN) isotope analysis has been used to study how silver carp impact native ecosystems, but lipids in fish tissues commonly bias their δC values. Chemical lipid extraction and mathematical equations that normalise δC values for lipid content can account for this bias, but have not been assessed for silver carp.

View Article and Find Full Text PDF

The products of an advanced sewage sludge fermentation process can be used to generate polyhydroxyalkanoates (PHAs), precursors of bioplastics considered excellent candidates for replacing petroleum-derived plastics. The aerobic feast-anoxic famine cycling strategy has proven to be an efficient method for enriching sewage sludge microbiota with PHA-producing microorganisms. This work evaluated the effect of different carbon to nitrogen ratios (C/N) of 3.

View Article and Find Full Text PDF

Divergent responses of plant multi-element coupling to nitrogen and phosphorus addition in a meadow steppe.

BMC Plant Biol

January 2025

Institute of Grassland Science, School of Life Sciences, Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China.

The intricate biogeochemical cycling of multiple elements plays a pivotal role in upholding a myriad of ecosystem functions. However, our understanding of elemental stoichiometry and coupling in response to global changes remains primarily limited to plant carbon: nitrogen: phosphorus (C: N: P). Here, we assessed the responses of 11 elements in plants from different functional groups to global changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!