A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of the second layer on geometry and spectral properties of doped two-dimensional hexagonal boron nitride. | LitMetric

Influence of the additional layer of hexagonal boron nitride (h-BN) on structure, energetics, and electronic spectra of a layer doped with magnesium, silicon, phosphorus, aluminum, or carbon atoms has been examined by theoretical methods. The h-BN layers are modeled as BN clusters of over thirty atoms with the defect in the center. The calculations show that atom positions undergo some modifications in the presence of the second layer, which in several cases lead to significant changes in electronic spectra, like (i) modifications of the character of some states from local excitation to a partial charge transfer; (ii) redshift of the majority of lowest excitations; (iii) absence or appearance of new states in comparison with the monolayers. For instance, a zero-intensity excitation below 4 eV for the carbon atom in place of boron transforms into a dipole-allowed one in the presence of the second layer. A comparison of the interaction energies of doped and undoped clusters shows a strong dependence of the stabilizing of destabilizing effect on the dopant atom, the replaced atom, and in some cases also on the stacking type (AA' or AB). The stabilization energy per BN pair, calculated for two undoped clusters, is equal to - 31 and - 28 meV for the AA' and AB stacking, respectively, thus confirming a larger stability of the AA' stacking for the h-BN case.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384999PMC
http://dx.doi.org/10.1007/s00894-020-04456-8DOI Listing

Publication Analysis

Top Keywords

second layer
12
hexagonal boron
8
boron nitride
8
electronic spectra
8
presence second
8
undoped clusters
8
aa' stacking
8
layer
5
influence second
4
layer geometry
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!