This paper outlines two cellulolytic bacterial consortia named SCS and SCB, isolated from soil samples of sugarcane (Saccharum officinarum) crop field, and a sugarcane bagasse deposit in an ethanol mill. Both consortia were able to grow on different carbon sources, such as sugarcane bagasse, corn husk, peanut hulls, and carboxymethylcellulose, releasing up to 11.90 µmol/mL and 15.23 µmol/mL of glucose for SCS and SCB, respectively. In addition, SCS and SCB have several strains capable of producing cellulase, amylase, lipase, and protease. Whole genome sequencing of the SCS consortium revealed that Burkholderia was the most prevalent genus, encompassing approximately 80% of the consortia. In addition, metagenome analysis allowed the identification of genes encoding enzymes related to starch and cellulose degradation, as well as enzymes related to lipases and proteases, confirming our initial findings. The results showed that SCS and SCB had the capability to degrade cellulose, and that they were an efficient source of enzyme production, which would provide a new choice for use in different biotechnological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-020-02136-7DOI Listing

Publication Analysis

Top Keywords

scs scb
16
bacterial consortia
8
biotechnological applications
8
sugarcane bagasse
8
scs
5
exploring potential
4
potential bacterial
4
consortia
4
consortia degrade
4
degrade cellulosic
4

Similar Publications

Article Synopsis
  • The study analyzed essential oils from different parts of the evergreen tree L. (leaves, fruits, seeds, and bark) to understand their chemical composition and potential anti-aging properties.
  • Researchers used GC/MS analysis to identify 82 compounds in the essential oils, revealing varying compositions between the different organs, with α-pinene and β-pinene being prominent.
  • The study also found that the essential oils from leaves and bark demonstrated strong anti-aging activities, making them suitable candidates for cosmetic formulations aimed at reducing skin aging.
View Article and Find Full Text PDF

High value-added lignin extracts from sugarcane by-products.

Int J Biol Macromol

March 2023

Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.

This study evaluates the production of lignin bioactive extracts from sugarcane bagasse (SCB) and straw (SCS) alkaline black liquors using greener precipitating agents (methane sulfonic acid (MSA), formic acid (FA) and lactic acid (LA)) as replacers of sulfuric acid (SA), the most common one used in industry. Results showed that the highest precipitation yield was achieved by LA when applied to SCB (14.5 g extract/100 g SCB).

View Article and Find Full Text PDF

Under the global landscape of the prolonged COVID-19 pandemic, the number of individuals who need to be tested for COVID-19 through screening centers is increasing. However, the risk of viral infection during the screening process remains significant. To limit cross-infection in screening centers, a non-contact mobile screening center (NCMSC) that uses negative pressure booths to improve ventilation and enable safe, fast, and convenient COVID-19 testing is developed.

View Article and Find Full Text PDF

While it is well established that using exogenous lipids (ELs) such as monoacylglycerols and polyglycerolesters of fatty acids improves gas cell incorporation and stability in sponge cake batter (SCB) and allows producing sponge cakes (SCs) with very high volume, fine grained crumb and soft texture, their impact on starch gelatinization and protein polymerization remained unknown. Here, differential scanning calorimetry and size-exclusion high performance liquid chromatography were performed on SC(B) samples prepared with or without ELs. Starch gelatinization and protein denaturation and polymerization started at temperatures exceeding 67 °C and mostly occurred up to a temperature of 96 °C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!