Osteocytes reside within a heavily mineralized matrix making them difficult to study and to extract for studies . IDG-SW3 cells are capable of producing mineralized collagen matrix and transitioning from osteoblasts to mature osteocytes, thus offering an alternative to study osteoblast to late osteocyte differentiation . The goal for this work was to develop a 3D degradable hydrogel to support IDG-SW3 differentiation and deposition of bone ECM. In 2D, the genes and increased during IDG-SW3 differentiation and were used as targets to create a MMP-sensitive poly(ethylene glycol) hydrogel containing the peptide crosslink GCGPLG-LWARCG and RGD to promote cell attachment. IDG-SW3 differentiation in the MMP-sensitive hydrogels improved over non-degradable hydrogels and standard 2D culture. Alkaline phosphatase activity at day 14 was higher, and were 8.1-fold and 3.8-fold higher, respectively, and DMP1 protein expression was more pronounced in the MMP-sensitive hydrogels compared to non-degradable hydrogels. Cell-encapsulation density (cells/ml precursor) influenced formation of dendrite-like cellular process and mineral and collagen deposition with 80×10 performing better than 2×10 or 20×10, while connexin 43 was not affected by cell density. The cell density effects were more pronounced in the MMP-sensitive hydrogels over non-degradable hydrogels. This study identified that high cell encapsulation density and a hydrogel susceptible to cell-mediated degradation enhanced mineralized collagen matrix and osteocyte differentiation. Overall, a promising hydrogel is presented that supports IDG-SW3 cell maturation from osteoblasts to osteocytes in 3D.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384758 | PMC |
http://dx.doi.org/10.1021/acsabm.9b01227 | DOI Listing |
JBMR Plus
February 2025
Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, United States.
Discoidin Domain Receptor 1 (DDR1) is a receptor tyrosine kinase that binds to and is activated by collagen(s), including collagen type I. deletion in osteoblasts and chondrocytes has previously demonstrated the importance of this receptor in bone development. In this study, we examined the effect of DDR1 ablation on bone architecture and mechanics as a function of aging.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Division of Trauma & Orthopaedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
Mesenchymal stromal cells (MSCs) have the potential for novel treatments of several musculoskeletal conditions due to their ability to differentiate into several cell lineages including chondrocytes, adipocytes and osteocytes. Researchers are exploring whether this could be utilized for novel therapies for joint afflictions. The role of gender in the ability of MSCs to differentiate and proliferate into different cells has not been clearly defined.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India.
Human hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are the major stem cells of the bone marrow and are usually isolated from the peripheral blood. In the present study, we isolated these stem cells by an apheresis method from a donor who was administered granulocyte colony-stimulating factor (G-CSF). propagation of these stem cells showed a plastic-adherence property expressing CD73 and CD105 surface markers, which is a characteristic feature of MSCs.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Endocrinology and Metabolism, Want Want Hospital, Changsha, Hunan, China.
Sclerostin, a protein synthesized by bone cells, is a product of the gene. Sclerostin is a potent soluble inhibitor of the WNT signaling pathway, and is known to inhibit bone formation by inhibiting osteocyte differentiation and function. Currently, sclerostin has been the subject of numerous animal experiments and clinical investigations.
View Article and Find Full Text PDFPathol Int
December 2024
Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Japan.
Bone is a unique organ crucial for locomotion, mineral metabolism, and hematopoiesis. It maintains homeostasis through a balance between bone formation by osteoblasts and bone resorption by osteoclasts, which is regulated by the basic multicellular unit (BMU). Abnormal bone metabolism arises from an imbalance in the BMU.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!