Visceral leishmaniasis (VL) has been a major health concern in the developing world, primarily affecting impoverished people. It is caused by a protozoan parasite and is characterized by immune dysfunction that can lead to deadly secondary infections. Several adverse side effects limit the existing treatment options; hence, the need of the hour is some drug option with high efficacy and no toxicity. To make targeted delivery of Amphotericin B (AmB), we have used amine-functionalized versions of carbon nanostructures, namely f-CNT and f-Graphene (f-Grap). The results with f-Grap-AmB, because of a much larger surface area, were expected to be better. However, the results obtained by us showed only marginal improvement (IC50 f-Grap-AmB; 0.0038 ± 0.00119 μg/mL). This is, in all likelihood, due to the agglomeration effect of f-Grap-AmB, which is invariably obtained with graphene. To resolve this issue, we have synthesized a graphene-CNT composite (graphene 70% and CNT 30% by weight). Because CNT is dispersed in between graphene sheets, the agglomeration effect is avoided, and our study suggests that the f-Composite-AmB (f-Comp-AmB) showed no toxicity against the murine J774A.1 macrophage cell line and did not induce any hepatic or renal toxicity in Swiss albino mice. The f-Comp-AmB also showed a remarkable elevation in the and antileishmanial efficacy in comparison to AmB and f-CNT-AmB or f-Grap-AmB in J774A.1 and Golden Syrian hamsters, respectively. Additionally, we have also observed that the percentage suppression of parasite replication in the spleen of the hamster was significantly higher in the f-Comp-AmB (97.79 ± 0.2375) treated group in comparison with the AmB (85.66 ± 1.164) treated group of hamsters. To conclude, f-Comp-AmB could be a safe and reliable therapeutic option over the other carbon-based nanoparticles (NPs), i.e., f-CNT-AmB, f-Grap-AmB, and conventional AmB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7350933 | PMC |
http://dx.doi.org/10.3389/fchem.2020.00510 | DOI Listing |
Int Immunopharmacol
January 2025
Infectious Diseases Laboratory, Campus Ministro Reis Velloso, Federal University of Parnaíba Delta, 64202-020 Parnaíba, PI, Brazil. Electronic address:
Visceral leishmaniasis is a systemic disease that affects various internal organs and represents the most severe and fatal form of leishmaniasis. Conventional treatment presents significant challenges, such as prolonged management in hospital settings, high toxicity, and an increasing growing number of cases of resistance. In previous studies, our research group demonstrated the effective and selective activity of the 2-amino-thiophene derivative SB-83 in preclinical models of cutaneous leishmaniasis.
View Article and Find Full Text PDFExp Parasitol
January 2025
Natural Products Chemistry Laboratory, State University of Ceará, Fortaleza, Brazil. Electronic address:
The current treatment of leishmaniasis is confronted with significant challenges, including limited efficacy, adverse effects, and parasite resistance to drugs. The search for alternative therapeutic options, including the utilisation of natural products, has demonstrated considerable promise. In this study, the antileishmanial activity of the flavonoid hesperetin against Leishmania donovani, the causative agent of visceral leishmaniasis, was reported for the first time.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
Leishmaniasis is a parasitic disease caused by protozoan organisms belonging to the Leishmania genus, affecting many individuals worldwide, with the burden surpassing one million cases. This disease leads to considerable morbidity and mortality, predominantly within tropical and subtropical regions. The current therapeutic options for leishmaniasis are far from ideal, as they fail to achieve a level of efficacy that can be deemed universally effective.
View Article and Find Full Text PDFExp Parasitol
January 2025
Department of Biotechnology, Savitribai Phule Pune University, 411007, Pune, India. Electronic address:
Visceral leishmaniasis (VL) is an opportunistic infection in HIV patients with higher relapse and mortality rate. The number of HIV-VL patients is comparatively higher in areas where both infections are endemic. However, the conventional chemotherapeutic agents have limited success due to drug toxicity, efficacy variance and overall cost of treatment.
View Article and Find Full Text PDFMolecules
January 2025
Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru.
Leishmaniasis, a neglected tropical disease caused by species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against , , and , comparing their effects to amphotericin B (AmpB), a standard drug. Malvidin demonstrated greater potency than echioidinin across all parasite stages and species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!