Medium-sized rings, including those embedded in bridged and fused bicyclic scaffolds, are common core structures of myriad bioactive molecules. Among various synthetic strategies towards their synthesis, intermolecular higher-order cycloaddition provides great potential to build complex medium-sized rings from simple building blocks. Unfortunately, such transformations are often plagued with competitive reaction pathways and low levels of site- and stereoselectivity. Herein, we report catalyst-controlled divergent access to three classes of medium-sized bicyclic compounds in high efficiency and stereoselectivity, by palladium-catalysed cycloadditions of tropones with γ-methylidene-δ-valerolactones. Mechanistic studies and density functional theory calculations disclosed that the divergent reactions stem from the different reaction profiles of the diastereomeric intermediates. While one undergoes either O- or C-allylation to provide [5.5.0] or [4.4.1] bicyclic compounds, the unique conformation of the other diastereomer allows an unconventional alkene isomerization to deliver bridgehead alkene-containing bicyclo[4.4.1] compounds. The conversion of these products to diverse complex polycyclic scaffolds has also been demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41557-020-0503-7DOI Listing

Publication Analysis

Top Keywords

bicyclic compounds
12
[550] [441]
8
[441] bicyclic
8
medium-sized rings
8
stereoselective access
4
access [550]
4
bicyclic
4
compounds
4
compounds pd-catalysed
4
pd-catalysed divergent
4

Similar Publications

Alzheimer's disease (AD) is primarily caused by oxidative stress, hyperphosphorylated τ-protein aggregation, and amyloid-β deposition. Changes in dopaminergic and serotoninergic neurotransmitter pathways are linked to certain symptoms of AD. Derivatives of bicyclic and tricyclic cyclohepta[b]thiophene were developed to identify new potential candidates as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors for the treatment of AD.

View Article and Find Full Text PDF

Over the past two decades, small molecules bearing [5,6]-bicyclic nitrogen-containing cores have emerged as one of the most extensively studied structures for the development of selective c-MET kinase inhibitors. Structure-activity relationship (SAR) studies have demonstrated that modifying these cores can significantly impact the biological properties of c-MET inhibitors, including safety/toxicity, potency, and metabolic stability. For example, although c-MET kinase inhibitors containing the [1,2,4]triazolo[4,3-b][1,2,4]triazine scaffold (core P) exhibit high inhibitory potency, they often face challenges due to metabolic stability defects.

View Article and Find Full Text PDF

Although great advancement has been made in synthesis of 3D bridged bicyclic[n.1.1]-bioisosteres, facile construction of 2D/3D merged molecules incorporating bridged rings, as novel chemical space in drug discovery, remains a significant challenge.

View Article and Find Full Text PDF

Genetically encoded libraries (GEL) are increasingly being used for the discovery of ligands for "undruggable" targets that cannot be addressed with small molecules. Foundational GEL platforms like phage-, yeast-, ribosome-, and mRNA-display have enabled the display of libraries composed of 20 natural amino acids (20AA). Unnatural amino acids (UAA) and chemical post-translational modification (cPTM) expanded GEL beyond the 20AA space to yield unnatural linear, cyclic, and bicyclic peptides.

View Article and Find Full Text PDF

Acquired immunodeficiency syndrome (AIDS) poses a significant threat to life. Antiretroviral therapy is employed to diminish the replication of the human immunodeficiency virus (HIV), extending life expectancy and improving the quality of patients' lives. These HIV-1 integrase inhibitors form robust covalent interactions with Mg ions, contributing to their tight binding, thereby inhibiting the integration of viral DNA into the CD4 cell DNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!