Structural and Functional Insights into a Lysine Deacylase in the Cyanobacterium sp. PCC 7002.

Plant Physiol

State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.

Published: October 2020

Lys deacylases are essential regulators of cell biology in many contexts. Here, we have identified CddA (cyanobacterial deacetylase/depropionylase), a Lys deacylase enzyme expressed in the cyanobacterium sp. PCC 7002 that has both deacetylase and depropionylase activity. Loss of the gene led to slower growth and impaired linear and cyclic photosynthetic electron transfer. We determined the crystal structure of this depropionylase/deacetylase at 2.1 Å resolution and established that it has a unique and characteristically folded α/β structure. We detected an acyl binding site within CddA via site-directed mutagenesis and demonstrated that this site is essential for the deproprionylase activity of this enzyme. Through a proteomic approach, we identified a total of 598 Lys residues across 382 proteins that were capable of undergoing propionylation. These propionylated proteins were highly enriched for photosynthetic and metabolic functionality. We additionally demonstrated that CddA was capable of catalyzing in vivo and in vitro Lys depropionylation and deacetylation of Fru-1,6-bisphosphatase, thereby regulating its enzymatic activity. Our identification of a Lys deacylase provides insight into the mechanisms globally regulating photosynthesis and carbon metabolism in cyanobacteria and potentially in other photosynthetic organisms as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536712PMC
http://dx.doi.org/10.1104/pp.20.00583DOI Listing

Publication Analysis

Top Keywords

cyanobacterium pcc
8
pcc 7002
8
lys deacylase
8
lys
5
structural functional
4
functional insights
4
insights lysine
4
lysine deacylase
4
deacylase cyanobacterium
4
7002 lys
4

Similar Publications

A circadian clock is reconstituted in vitro by incubating three proteins, KaiA, KaiB, and KaiC from the non-nitrogen-fixing cyanobacterium Synechococcus elongatus PCC 7942 in the presence of ATP. Leptolyngbya boryana is a filamentous cyanobacterium that grows diazotrophically under microoxic conditions. Among the aforementioned proteins, KaiC is the main clock oscillator belonging to the RecA ATPase superfamily.

View Article and Find Full Text PDF

Foundational to establishment and recovery of biocrusts is a mutualistic exchange of carbon for nitrogen between pioneer cyanobacteria, including the widespread Microcoleus vaginatus, and heterotrophic diazotrophs in its "cyanosphere". In other such mutualisms, nitrogen is transferred as amino acids or ammonium, preventing losses through specialized structures, cell apposition or intracellularity. Yet, in the biocrust symbiosis relative proximity achieved through chemotaxis optimizes the exchange.

View Article and Find Full Text PDF

Improving productivity of citramalate from CO by Synechocystis sp. PCC 6803 through design of experiment.

Biotechnol Biofuels Bioprod

December 2024

Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Background: Cyanobacteria have long been suggested as an industrial chassis for the conversion of carbon dioxide to products as part of a circular bioeconomy. The slow growth, carbon fixation rates, and limits of carbon partitioning between biomass and product in cyanobacteria must be overcome to fully realise this industrial potential. Typically, flux towards heterologous pathways is limited by the availability of core metabolites.

View Article and Find Full Text PDF

Phototactic signaling network in rod-shaped cyanobacteria: A study on Synechococcus elongatus UTEX 3055.

Microbiol Res

November 2024

State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China. Electronic address:

Light-controlled motility is advantageous for photosynthetic prokaryotes to better survive in environment with constantly changing light conditions. For cyanobacteria, light is both an energy source for photosynthesis and a stress factor. Consequently, some cyanobacteria evolved the ability to control type-IV pili (T4P)-mediated surface motility using a chemotaxis-like system in response to light signals.

View Article and Find Full Text PDF

ThyD Is a Thylakoid Membrane Protein Influencing Cell Division and Acclimation to High Light in the Multicellular Cyanobacterium Anabaena sp. Strain PCC 7120.

Mol Microbiol

December 2024

Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain.

Cyanobacteria developed oxygenic photosynthesis and represent the phylogenetic ancestors of chloroplasts. The model strain Anabaena sp. strain PCC 7120 grows as filaments of communicating cells and can form heterocysts, cells specialized for N fixation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!