Objective: The aim of this study is to examine patients' experiences in integrated care (IC) settings.
Design: Qualitative study using semistructured interviews.
Settings: Two IC sites in Toronto, Canada: (1) a community-based primary healthcare centre, supporting patients with hepatitis C and comorbid mental health and substance use issues; and (2) an integrated bariatric surgery programme, an academic tertiary care centre.
Participants: The study included patients (n=12) with co-occurring mental and physical health conditions. Seven participants (58%) were female and five (42%) were male.
Methods: Twelve indepth semistructured interviews were conducted with a purposeful sample of patients (n=12) with comorbid mental and physical conditions at two IC sites in Toronto between 2017 and 2018. Data were collected and analysed using grounded theory approach.
Results: Four themes emerged in our analysis reflecting patients' perspectives on patient-centred care experience in IC: (1) caring about me; (2) collaborating with me; (3) helping me understand and self-manage my care; and (4) personalising care to address my needs. Patients' experiences of care were primarily shaped by quality of relational interactions with IC team members. Positive interactions with IC team members led to enhanced patient access to care and fostered personalising care plans to address unique needs.
Conclusion: This study adds to the literature on creating patient-centredness in IC settings by highlighting the importance of recognising patients' unique needs and the context of care for the specific patient population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7389773 | PMC |
http://dx.doi.org/10.1136/bmjopen-2019-034970 | DOI Listing |
Background: Coronary heart disease (CHD) and depression frequently co-occur, significantly impacting patient outcomes. However, comprehensive health status assessment tools for this complex population are lacking. This study aimed to develop and validate an explainable machine learning model to evaluate overall health status in patients with comorbid CHD and depression.
View Article and Find Full Text PDFAnnu Rev Clin Psychol
January 2025
3Department of Psychology, Stony Brook University, Stony Brook, New York, USA.
Most people with mental health needs cannot access treatment; among those who do, many access services only once. Accordingly, single-session interventions (SSIs) may help bridge the treatment gap. We conducted the first umbrella review synthesizing research on SSIs for mental health problems and service engagement in youth and adults.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics and Astronomy, Franklin College of Arts and Sciences, The University of Georgia, Athens, Georgia 30602, United States.
Multiple respiratory viruses can concurrently or sequentially infect the respiratory tract, making their identification crucial for diagnosis, treatment, and disease management. We present a label-free diagnostic platform integrating surface-enhanced Raman scattering (SERS) with deep learning for rapid, quantitative detection of respiratory virus coinfections. Using sensitive silica-coated silver nanorod array substrates, over 1.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Burwood, Australia.
Background: Heart failure (HF) is a chronic, progressive condition where the heart cannot pump enough blood to meet the body's needs. In addition to the daily challenges that HF poses, acute exacerbations can lead to costly hospitalizations and increased mortality. High health care costs and the burden of HF have led to the emerging application of new technologies to support people living with HF to stay well while living in the community.
View Article and Find Full Text PDFJMIR Cancer
January 2025
Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom.
Background: Skin cancers, including melanoma and keratinocyte cancers, are among the most common cancers worldwide, and their incidence is rising in most populations. Earlier detection of skin cancer leads to better outcomes for patients. Artificial intelligence (AI) technologies have been applied to skin cancer diagnosis, but many technologies lack clinical evidence and/or the appropriate regulatory approvals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!