Interaction between water and composite films based on chitosan and chitin nanofibrils was studied. Isotherms of water vapor sorption by composite films were used to calculate partial values of entropy and enthalpy of sorbate; dependences of entropy and enthalpy on water sorption value were obtained. It was demonstrated that introducing chitin nanofibrils into chitosan matrix leads to decrease in sorption capacity of composite films. Apparently, this phenomenon is caused by formation of ordered structures consisting of chitosan macromolecules on the surface of chitin nanofibrils. The hypothesis was confirmed by calculations of thermodynamic parameters of the chitosan/chitin/water system. The calculations led to the conclusion that thermodynamically stable chitosan/chitin system is formed in composite films; in addition, it was revealed that the strongest chitosan-chitin interaction arises in the composite containing 1-5 wt.% of chitin nanofibrils. In this concentration range, Gibbs energy, entropy and enthalpy of mixing pass through a minimum; this result indicates that the highest affinity between chitosan and chitin exists when concentration of chitin nanofibrils varies from 1 to 5 wt.%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2020.116552DOI Listing

Publication Analysis

Top Keywords

chitin nanofibrils
24
composite films
20
chitosan chitin
12
entropy enthalpy
12
interaction water
8
water composite
8
films based
8
based chitosan
8
chitin
7
composite
6

Similar Publications

Tannins from (black wattle) are one of the few industrially available sources of nonlignin polyphenols. The intrinsic chemical heterogeneity and high dispersity of industrial tannins complicate their use in applications where the reactivity or colloidal interactions need to be precisely controlled. Here, we employ a solubility-centered sequential fractionation to obtain homogeneous tannin fractions with a dispersity index lower than 2.

View Article and Find Full Text PDF

Fungal Chitin Nanofibrils Improve Mechanical Performance and UV-Light Resistance in Carboxymethylcellulose and Polyvinylpyrrolidone Films.

Biomacromolecules

December 2024

Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao, Biscay 48013, Spain.

Materials from renewable carbon feedstock can limit our dependence on fossil carbon and facilitate the transition from linear carbon-intensive economies to sustainable, circular economies. Chitin nanofibrils (ChNFs) isolated from white mushrooms offer remarkable environmental benefits over conventional crustacean-derived nanochitin. Herein, ChNFs are utilized to reinforce polymers of natural and fossil origin, carboxymethyl cellulose (CMC) and polyvinylpyrrolidone (PVP), respectively.

View Article and Find Full Text PDF

Preparation of chitosan/cellulose nanofibril composite aerogel and its adsorption performance for Cu(II)-MO binary pollutant.

Int J Biol Macromol

November 2024

College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Heavy metals and organic dyes commonly coexist in water, which pose a serious threat to human health. Herein, a functional aerogel for adsorption of Cu(II)-methyl orange binary-polluted system was prepared. Cellulose nanofibril (CNF) was prepared by 2,2,6,6-tetramethylpiperidinyloxy (TEMPO)-NaBr-NaClO system using abandoned pineapple leaves as the main raw material, and chitosan/cellulose nanofibril (CS/CNF) composite aerogel was constructed by sol-gel method combined with freeze-drying.

View Article and Find Full Text PDF

Evaluating the strategies to improve strength and water-resistance of chitin nanofibril assembled structures: Molecule-bridging, heat-treatment and deacidifying.

Int J Biol Macromol

November 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, PR China. Electronic address:

Chitin nanofibril (ChiNF) is a promising building block used to fabricate chitin fibers, films or gels via self-assembly from its aqueous suspension. Although mechanical strengthening of its assembled structures has made great advances, the unsatisfactory water-resistance is still a crucial obstacle to practical application and even rarely referred to. Herein, ChiNF was prepared via deacetylation-ultrasonication treatment and the strategies of molecule-bridging, heat-treatment and deacidifying that aiming to improve the strength and water-resistance of its assembled films were evaluated.

View Article and Find Full Text PDF

One concern that has been considered potentially fatal is bacterial infection. In addition to the development of biocompatible antibacterial dressings, the screening and combination of new antibiotics effective against antibiotic resistance are crucial. In this study, designing hemostasis electrospun composite nanofibers containing chitosan (CS), polyvinyl pyrrolidone (PVP) and Gelatin (G) as the major components of hydrogel and natural nanofibrillated sodium alginate (SA)/polyvinyl alcohol (PVA) and ZnO nanoparticles (ZnONPs) combination as the nanofiller ingredient, has been investigated which demonstrated significant potential for accelerating wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!