Droplet microfluidics has appealed to many interests for its capability to epitomize cells in a microscale environment and it is also a forceful technique for high-throughput single-cell epitomization. A dielectrophoretic microfluidic system imitates the oviduct of mammals with a microchannel to achieve fertilization in vitro (IVF) of an imprinting control-region (ICR) mouse. We applied a microfluidic chip and a positive dielectrophoretic (p-DEP) force to capture and to screen the sperm for the purpose of manipulating the oocyte. The p-DEP responses of the oocyte and sperm were exhibited under applied bias conditions (waveform AC 10 V, 1 MHz) for trapping 1 min. The insemination concentration of sperm nearby the oocyte was increased to enhance the probability of natural fertilization through the p-DEP force trapping. A simulation tool (CFDRC-ACE+) was used to simulate and to analyze the distribution of the electric field. The DEP microfluidic devices were fabricated using poly (dimethylsiloxane) (PDMS) and ITO (indium tin oxide)-glass with electrodes. We discuss the requirement of sperm in a DEP microfluidic chip at varied concentrations to enhance the future rate of fertilization in vitro for an oligozoospermia patient. The result indicates that the rate of fertility in our device is 17.2 ± 7.5% ( = 30) at about 3000 sperms, compatible with traditional droplet-based IVF, which is 14.2 ± 7.5% ( = 28).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464277 | PMC |
http://dx.doi.org/10.3390/mi11080714 | DOI Listing |
Lab Chip
December 2024
State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing 100084, P. R. China.
The separation of large-size-range particles of complex biological samples is critical but yet well resolved. As a label-free technique, dielectrophoresis (DEP)-based particle separation faces the challenge of how to configure DEP in an integrated microfluidic device to bring particles of various sizes into the effective DEP force field. Herein, we propose a concept that combines the passive flow fraction mechanism with the accumulative DEP deflection effect in a cascaded manner.
View Article and Find Full Text PDFLangmuir
December 2024
Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea.
Extracellular vesicles (EVs) are small lipid vesicles shed by cells, carrying proteins, nucleic acids, and other molecular fingerprints. EVs have emerged as crucial mediators of cell-to-cell communication and hold great promise as biomarkers for liquid biopsies, enabling disease screening, diagnosis, prognosis, and monitoring. However, conventional EV separation methods are hampered by the presence of lipoproteins (LPs) in plasma samples, which have comparable characteristics and significantly outnumber EVs.
View Article and Find Full Text PDFElectrophoresis
November 2024
Chair of Sensor and Actuator Systems, Faculty of EECS, TU Berlin, Berlin, Germany.
In this study, the influence of using rectangular waveforms is comprehensively investigated on the separation and sorting efficiency of dielectrophoretic (DEP) processes. Besides positive effects on DEP experiments, cases of a diminished force due to rectangular waveforms are investigated and discussed. This investigation encompasses two primary experimental setups.
View Article and Find Full Text PDFSci Rep
November 2024
University of Science, Vietnam National University, Hanoi, Vietnam.
Circulating tumor cell separation has been the focus of numerous studies owing to its importance in the diagnosis, prognosis, and therapy of cancer. This study reports a highly efficient microfluidic device that integrates a specialized dielectrophoresis configuration, namely the facing-electrode configuration dielectrophoresis (FEC-DEP) structure, to isolate circulating tumor cells (CTCs) from various blood components, including red blood cells, white blood cells, and platelets. The FEC-DEP design features a bottom-slanted electrode array positioned parallel to a basic rectangular top electrode.
View Article and Find Full Text PDFSens Actuators B Chem
January 2025
Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, United States.
Circulating cell free DNA (cfDNA) is a valuable source of biomarkers for a range of medical applications including detection and monitoring of diseases. Currently, cfDNA sequence analysis must take place in a laboratory setting, due to the multiple steps required for processing including collection, purification, amplification, and analysis. Developing a point-of-care test system that combines these steps would simplify DNA processing thereby increasing diagnostic screening accessibility and enabling real-time monitoring for individual patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!