Neurological patients can have severe gait impairments that contribute to fall risks. Predicting falls from gait abnormalities could aid clinicians and patients mitigate fall risk. The aim of this study was to predict fall status from spatial-temporal gait characteristics measured by a wearable device in a heterogeneous population of neurological patients. Participants ( = 384, age 49-80 s) were recruited from a neurology ward of a University hospital. They walked 20 m at a comfortable speed (single task: ST) and while performing a dual task with a motor component (DT1) and a dual task with a cognitive component (DT2). Twenty-seven spatial-temporal gait variables were measured with wearable sensors placed at the lower back and both ankles. Partial least square discriminant analysis (PLS-DA) was then applied to classify fallers and non-fallers. The PLS-DA classification model performed well for all three gait tasks (ST, DT1, and DT2) with an evaluation of classification performance Area under the receiver operating characteristic Curve (AUC) of 0.7, 0.6 and 0.7, respectively. Fallers differed from non-fallers in their specific gait patterns. Results from this study improve our understanding of how falls risk-related gait impairments in neurological patients could aid the design of tailored fall-prevention interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435707PMC
http://dx.doi.org/10.3390/s20154098DOI Listing

Publication Analysis

Top Keywords

neurological patients
16
spatial-temporal gait
12
measured wearable
12
gait
8
gait characteristics
8
characteristics measured
8
wearable device
8
gait impairments
8
dual task
8
patients
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!