Autonomous driving systems are set to become a reality in transport systems and, so, maximum acceptance is being sought among users. Currently, the most advanced architectures require driver intervention when functional system failures or critical sensor operations take place, presenting problems related to driver state, distractions, fatigue, and other factors that prevent safe control. Therefore, this work presents a redundant, accurate, robust, and scalable LiDAR odometry system with fail-aware system features that can allow other systems to perform a safe stop manoeuvre without driver mediation. All odometry systems have drift error, making it difficult to use them for localisation tasks over extended periods. For this reason, the paper presents an accurate LiDAR odometry system with a fail-aware indicator. This indicator estimates a time window in which the system manages the localisation tasks appropriately. The odometry error is minimised by applying a dynamic 6-DoF model and fusing measures based on the Iterative Closest Points (ICP), environment feature extraction, and Singular Value Decomposition (SVD) methods. The obtained results are promising for two reasons: First, in the KITTI odometry data set, the ranking achieved by the proposed method is twelfth, considering only LiDAR-based methods, where its translation and rotation errors are 1.00 % and 0.0041 deg/m, respectively. Second, the encouraging results of the fail-aware indicator demonstrate the safety of the proposed LiDAR odometry system. The results depict that, in order to achieve an accurate odometry system, complex models and measurement fusion techniques must be used to improve its behaviour. Furthermore, if an odometry system is to be used for redundant localisation features, it must integrate a fail-aware indicator for use in a safe manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435861 | PMC |
http://dx.doi.org/10.3390/s20154097 | DOI Listing |
Sensors (Basel)
December 2024
SOTI Aerospace, SOTI Inc., Mississauga, ON L5N 8L9, Canada.
Indoor navigation is becoming increasingly essential for multiple applications. It is complex and challenging due to dynamic scenes, limited space, and, more importantly, the unavailability of global navigation satellite system (GNSS) signals. Recently, new sensors have emerged, namely event cameras, which show great potential for indoor navigation due to their high dynamic range and low latency.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Computer Science, Zurich University of Applied Sciences, 8400 Winterthur, Switzerland.
Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Electrical, Computer, and Biomedical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.
Autonomous technologies have revolutionized transportation, military operations, and space exploration, necessitating precise localization in environments where traditional GPS-based systems are unreliable or unavailable. While widespread for outdoor localization, GPS systems face limitations in obstructed environments such as dense urban areas, forests, and indoor spaces. Moreover, GPS reliance introduces vulnerabilities to signal disruptions, which can lead to significant operational failures.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Vehicle and Transportation Engineering, Tsinghua University, Beijing 100083, China.
In response to the current situation of backward automation levels, heavy labor intensities, and high accident rates in the underground coal mine auxiliary transportation system, the mining trackless auxiliary transportation robot (MTATBOT) is presented in this paper. The MTATBOT is specially designed for long-range, space-constrained, and explosion-proof underground coal mine environments. With an onboard perception and autopilot system, the MTATBOT can perform automated and unmanned subterranean material transportation.
View Article and Find Full Text PDFInt J Rob Res
January 2025
Department of Earth and Space Science and Engineering, Lassonde School of Engineering, York University, Toronto, ON, Canada.
The York University Teledyne Optech (YUTO) Mobile Mapping System (MMS) Dataset, encompassing four sequences totaling 20.1 km, was thoroughly assembled through two data collection expeditions on August 12, 2020, and June 21, 2019. Acquisitions were performed using a uniquely equipped vehicle, fortified with a panoramic camera, a tilted LiDAR, a Global Positioning System (GPS), and an Inertial Measurement Unit (IMU), journeying through two strategic locations: the York University Keele Campus in Toronto and the Teledyne Optech headquarters in City of Vaughan, Canada.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!