Bran friability (particle size distribution after milling) and water retention capacity (WRC) impact wheat bran functionality in whole grain milling and baking applications. The goal of this study was to identify genomic regions and underlying genes that may be responsible for these traits. The Hard Winter Wheat Association Mapping Panel, which comprised 299 lines from breeding programs in the Great Plains region of the US, was used in a genome-wide association study. Bran friability ranged from 34.5% to 65.9% (median, 51.1%) and WRC ranged from 159% to 458% (median, 331%). Two single-nucleotide polymorphisms (SNPs) on chromosome 5D were significantly associated with bran friability, accounting for 11-12% of the phenotypic variation. One of these SNPs was located within the gene, which is known for influencing endosperm texture. Two SNPs on chromosome 4A were tentatively associated with WRC, accounting for 4.6% and 4.4% of phenotypic variation. The favorable alleles at the SNP sites were present in only 15% (friability) and 34% (WRC) of lines, indicating a need to develop new germplasm for these whole-grain end-use quality traits. Validation of these findings in independent populations will be useful for breeding winter wheat cultivars with improved functionality for whole grain food applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466047PMC
http://dx.doi.org/10.3390/genes11080838DOI Listing

Publication Analysis

Top Keywords

bran friability
16
winter wheat
12
water retention
8
retention capacity
8
end-use quality
8
wheat bran
8
functionality grain
8
snps chromosome
8
phenotypic variation
8
bran
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!