Gray matter alteration in heroin-dependent men: An atlas-based magnetic resonance imaging study.

Psychiatry Res Neuroimaging

College of Electronic and Information Engineering, Sichuan University, Chengdu, 610065, China. Electronic address:

Published: October 2020

Previous imaging studies on heroin addiction have reported brain morphological alterations. However, the effects of heroin exposure on gray matter volume varied among different studies due to different factors such as substitution treatment or mandatory abstinence. Meanwhile, the relationship between gray matter and heroin use history remains unknown. Thirty-three male heroin-dependent (HD) individuals who are not under any substitution treatment or mandatory abstinence and 40 male healthy controls (HC) were included in this structural magnetic resonance imaging study. With an atlas-based approach, gray matter structures up to individual functional area were delineated, and the differences in their volumes between the HD and HC groups were analyzed. In addition, the relationship between gray matter volume and duration of heroin use was explored. The HD group demonstrated significantly lower cortical volume mainly in the prefrontal cortex and mesolimbic dopaminergic regions across different parcellation levels, whereas several visual and somatosensory cortical regions in the HD group had greater volume relative to the HC group at a more detailed parcellation level. The duration of heroin use was negatively correlated with the gray matter volume of prefrontal cortex. These findings suggest that heroin addiction be related to gray matter alteration and might be related to damage/maladaption of the inhibitory control, reward, visual, and somatosensory functions of the brain, although cognitive correlates are warranted in future study. In addition, the atlas-based morphology analysis is a potential tool to help researchers search biomarkers of heroin addiction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8170872PMC
http://dx.doi.org/10.1016/j.pscychresns.2020.111150DOI Listing

Publication Analysis

Top Keywords

gray matter
28
heroin addiction
12
matter volume
12
matter alteration
8
magnetic resonance
8
resonance imaging
8
imaging study
8
substitution treatment
8
treatment mandatory
8
mandatory abstinence
8

Similar Publications

Background/aim: Congenital diaphragmatic hernia (CDH) is a critical condition affecting newborns, which often results in long-term morbidities, including neurodevelopmental delays, which affect cognitive, motor, and behavioral functions. These delays are believed to stem from prenatal and postnatal factors, such as impaired lung development and chronic hypoxia, which disrupt normal brain growth. Understanding the underlying mechanisms of these neurodevelopmental impairments is crucial for improving prognosis and patient outcomes, particularly as advances in treatments like ECMO have increased survival rates but also pose additional risks for neurodevelopment.

View Article and Find Full Text PDF

Development of a short form of the Geriatric Depression Scale-30 based on item response theory and the RiskSLIM algorithm.

Gen Hosp Psychiatry

December 2024

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China. Electronic address:

Recently, methods of quickly and accurately screening for geriatric depression have attracted substantial attention. Short forms of the 30-item Geriatric Depression Scale have been developed based on classical test theory, such as the GDS-4, GDS-5, and GDS-15, but they have shown low diagnostic accuracy. Therefore, in this study, we developed a new short form of the GDS-30 based on item response theory and the RiskSLIM, a machine learning method, and validated it based on gray matter volume.

View Article and Find Full Text PDF

Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.

View Article and Find Full Text PDF

Purpose: Proton magnetic resonance spectroscopic imaging ( -MRSI) provides noninvasive spectral-spatial mapping of metabolism. However, long-standing problems in whole-brain -MRSI are spectral overlap of metabolite peaks with large lipid signal from scalp, and overwhelming water signal that distorts spectra. Fast and effective methods are needed for high-resolution -MRSI to accurately remove lipid and water signals while preserving the metabolite signal.

View Article and Find Full Text PDF

T* relaxometry of fetal brain structures using low-field (0.55T) MRI.

Magn Reson Med

December 2024

Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.

Purpose: Human brain development during gestation is complex, as both structure and function are rapidly forming. Structural imaging methods using MRI are well developed to explore these changes, but functional imaging tools are lacking. Low-field MRI is a promising modality to bridge this gap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!