ZnO/Au/rGO ternary nanocomposites possessing a high photocatalytic response under solar irradiation were synthesized by a two-step process via a pulsed laser synthesis and a wet chemical process. The crystalline structure, surface morphology, size distribution, elemental composition, and optical properties of the prepared ZnO/Au/rGO ternary nanocomposites were characterized using X-ray diffraction, field-emission scanning electron microscope, high-resolution transmission electron microscope, energy-dispersive X-ray spectroscopy, UV-vis diffuse reflectance spectra, and photoluminescence analysis. The photocatalytic activity of the as synthesized nanocomposites was evaluated for the degradation of methylene blue (MB) under solar light irradiation (SLI). The density of the elemental and carbonaceous components, such as the Au nanoparticles (NPs) and the rGO nano-matrix on ZnO, could be altered by changing the concentration of HAuCl.3HO (5, 10, 15, and 20 wt%) or rGO (2.5, 5, and 7.5 wt%) using the same synthetic processes. The ZnO/Au15/rGO5 nanocomposite showed the highest photocatalytic degradation efficiency of 95% MB after 120 min under SLI, potentially due to the increased absorption of solar light or the efficient separation and migration of charge carriers by the anchored Au NPs and rGO onto the ZnO NPs. Further, the observed results and reusability of ZnO/Au15/rGO5 makes it an exceptionally promising material for diverse applications in the field of wastewater treatment and other types of environmental remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2020.115247 | DOI Listing |
Small
January 2025
Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan, 44610, Republic of Korea.
The current lack of stable, scalable, and efficient coating technology dramatically limits the exploitation of solar-driven graphitic carbon nitride (CN) photocatalysts. Herein, a unique, efficient, and scalable method is reported to immobilize CN powder on various substrates ranging from Fluorine tin oxide (FTO), glass, Plexiglas, Al foil, Ti foil, and Granite stone, to even wood. The film shows an outstanding thickness of 212 µm, which is the highest value ever reported.
View Article and Find Full Text PDFChemSusChem
January 2025
Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China.
Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO and inefficient hole transport. In this study, we introduced MoS nanoparticles at the indium tin oxide (ITO) /NiO interface to enhance the ITO surface and optimize the deposition of NiO, resulting in increased conductivity linked to a ratio of Ni:Ni.
View Article and Find Full Text PDFChem
November 2024
Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
We introduce donor-acceptor substituted anthracenes as effective molecular solar thermal energy storage compounds that operate exclusively in the solid state. The donor-acceptor anthracenes undergo visible light-induced [4+4] cycloaddition reaction, producing metastable cycloadducts, dianthracenes with quaternary carbons, and storing photon energy. The triggered cycloreversion of dianthracenes to anthracenes discharges the stored energy as heat in the order of 100 kJ/mol (200 J/g).
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
Developing a self-sensitized catalyst from earth-abundant elements, capable of efficient light harvesting and electron transfer, is crucial for enhancing the efficacy of CO transformation, a critical step in environmental cleanup and advancing clean energy prospects. Traditional approaches relying on external photosensitizers, comprising 4d/5d metal complexes, involve intermolecular electron transfer, and attachment of photosensitizing arms to the catalyst necessitates intramolecular electron transfer, underscoring the need for a more integrated solution. We report a new Cu(ii) complex, K[CuNDPA] (1[K(18-crown-6)]), bearing a dipyrrin amide-based trianionic tetradentate ligand, NDPA (HL), which is capable of harnessing light energy, despite having a paramagnetic Cu(ii) centre, without any external photosensitizer and photocatalytically reducing CO to CO in acetonitrile : water (19 : 1 v/v) with a TON as high as 1132, a TOF of 566 h and a selectivity of 99%.
View Article and Find Full Text PDFChemistry
January 2025
Yanshan University, Physics, Hebeidajie,438, 066004, Qinhuangdao, CHINA.
Identifying two-dimensional (2D) high-efficiency solar photovoltaic devices remains an urgent challenge in addressing current energy demands. Considering the limits of isolated 2D systems in photovoltaics, one most effective solution is stacking them into van der Waals heterostructures (vdWHs). However, the favorable factors for photovoltaics in vdWHs is still uncertain, nor the intrinsic principles is clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!