A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing the natural capital value of water quality and climate regulation in temperate marine systems using a EUNIS biotope classification approach. | LitMetric

Using a natural capital framework to inform improvements to water quality and mitigation of climate change requires robust and spatially explicit ecosystem service data. Yet, for coastal habitats this approach is often constrained by a) sufficient and relevant habitat extent data and b) significant variability in baseline assessments used to quantify and value regulatory habitat services. Here, the European Nature Information System (EUNIS) habitat classification scheme is used to map seven key temperate coastal biotopes (littoral sediment, mat-forming green macroalgae, subtidal sediment, saltmarsh, seagrass, reedbeds and native oyster reefs) within the UK's Solent European Marine Site (SEMS). We then estimate the capacity of these biotopes to remove nitrogen (N) and phosphorus (P) and carbon (C), alongside monetary values associated with the resulting benefits. Littoral and sublittoral sediments (including those combined with macroalgae) were the largest contributors to total N, P and C removal, reflecting their large biotope area. However, our results also show considerable differences in relative biotope contributions to nutrient removal depending on how they are analysed and delineated over large spatial scales. When considered at a regional catchment level seagrass meadows, saltmarshes and reedbeds all had considerable N, P and C removal potential. Overall, we estimate that SEMS biotopes provide nutrient reductions and avoided climate damages equivalent to UK £1.1 billion, although this could be nearly £10 billion if water-treatment infrastructure costs and high carbon trading prices are utilised. Despite the variability in the final natural capital evaluations, the substantial regulatory value of N, P and C ecosystem services support a strong rational for restoring temperate coastal biotopes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.140688DOI Listing

Publication Analysis

Top Keywords

natural capital
12
water quality
8
temperate coastal
8
coastal biotopes
8
assessing natural
4
capital water
4
quality climate
4
climate regulation
4
regulation temperate
4
temperate marine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!