A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Suppression of microglial activation and monocyte infiltration ameliorates cerebellar hemorrhage induced-brain injury and ataxia. | LitMetric

Suppression of microglial activation and monocyte infiltration ameliorates cerebellar hemorrhage induced-brain injury and ataxia.

Brain Behav Immun

State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Institute for Brain Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China. Electronic address:

Published: October 2020

Ataxia, characterized by uncoordinated movement, is often found in patients with cerebellar hemorrhage (CH), leading to long-term disability without effective management. Microglia are among the first responders to CNS insult. Yet the role and mechanism of microglia in cerebellar injury and ataxia after CH are still unknown. Using Ki20227, an inhibitor for colony-stimulating factor 1 receptor which mediates the signaling responsible for the survival of microglia, we determined the impact of microglial depletion on cerebellar injury and ataxia in a murine model of CH. Microglial depletion reduced cerebellar lesion volume and alleviated gait abnormality, motor incoordination, and locomotor dysfunction after CH. Suppression of CH-initiated microglial activation with minocycline ameliorated cerebellum infiltration of monocytes/macrophages, as well as production of proinflammatory cytokines and chemokine C-C motif ligand-2 (CCL-2) that recruits monocytes/macrophages. Furthermore, both minocycline and bindarit, a CCL-2 inhibitor, prevented apoptosis and electrophysiological dysfunction of Purkinje cells, the principal neurons and sole outputs of the cerebellar cortex, and consequently improved ataxia-like motor abnormalities. Our findings suggest a detrimental role of microglia in neuroinflammation and ataxic motor symptoms after CH, and pave a new path to understand the neuroimmune mechanism underlying CH-induced cerebellar ataxia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2020.07.027DOI Listing

Publication Analysis

Top Keywords

injury ataxia
12
microglial activation
8
cerebellar hemorrhage
8
cerebellar injury
8
microglial depletion
8
cerebellar
7
ataxia
5
suppression microglial
4
activation monocyte
4
monocyte infiltration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!