Pharmacological reactivation of the γ-globin gene for the production of fetal hemoglobin (HbF) is a promising approach for the management of β-thalassemia and sickle cell disease (SCD). We conducted a phenotypic screen in human erythroid progenitor cells to identify molecules that could induce HbF, which resulted in identification of the hit compound 1. Exploration of structure-activity relationships and optimization of ADME properties led to 2-azaspiro[3.3]heptane derivative 18, which is more rigid and has a unique structure. In vivo using cynomolgus monkeys, compound 18 induced a significant dose-dependent increase in globin switching, with developable properties. Moreover, compound 18 showed no genotoxic effects and was much safer than hydroxyurea. These findings could facilitate the development of effective new therapies for the treatment of β-hemoglobinopathies, including SCD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2020.127425DOI Listing

Publication Analysis

Top Keywords

fetal hemoglobin
8
design synthesis
4
synthesis optimization
4
optimization series
4
series 2-azaspiro[33]heptane
4
2-azaspiro[33]heptane derivatives
4
derivatives orally
4
orally bioavailable
4
bioavailable fetal
4
hemoglobin inducers
4

Similar Publications

The modern use of hydroxyurea for children with sickle cell anemia.

Haematologica

January 2025

Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati OH; University of Cincinnati College of Medicine, Cincinnati OH; Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati OH.

Over the past 40 years, the introduction and refinement of hydroxyurea therapy has led to remarkable progress for the care of individuals with sickle cell anemia (SCA). From initial small proof-of-principle studies to multi-center Phase 3 controlled clinical trials and then numerous open-label studies, the consistent benefits of once-daily oral hydroxyurea have been demonstrated across the lifespan. Elevated fetal hemoglobin (HbF) serves as the most important treatment response, as HbF delays sickle hemoglobin polymerization and reduces erythrocyte sickling.

View Article and Find Full Text PDF

Background: We sought to determine whether transamniotic stem cell therapy (TRASCET) could be a viable alternative for the fetal administration of genetically modified hematopoietic stem cells (HSCs) carrying a human hemoglobin subunit beta gene (hHBB) in a healthy syngeneic rat model.

Methods: Time-dated pregnant Lewis dams underwent volume-matched intra-amniotic injections in all their fetuses (n = 61) of a suspension of donor HSCs genetically modified with either both a hHBB gene and a firefly luciferase reporter gene (n = 42) or the firefly luciferase reporter gene alone to control for HBB-derived protein interspecies homology (n = 19) on gestational day 17 (E17; term = E21). Donor HSCs consisted of syngeneic cells phenotyped by flow cytometry with successful hHBB transduction confirmed by ELISA prior to administration in vivo.

View Article and Find Full Text PDF

Haplotype-Resolved Genotyping and Association Analysis of 1,020 β-Thalassemia Patients by Targeted Long-Read Sequencing.

Adv Sci (Weinh)

December 2024

Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Despite the well-documented mutation spectra of β-thalassemia, the genetic variants and haplotypes of globin gene clusters modulating its clinical heterogeneity remain incompletely illustrated. Here, a targeted long-read sequencing (T-LRS) is demonstrated to capture 20 genes/loci in 1,020 β-thalassemia patients. This panel permits not only identification of thalassemia mutations at 100% of sensitivity and specificity, but also detection of rare structural variants (SVs) and single nucleotide variants (SNVs) in modifier genes/loci.

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) and β-thalassemia patients with elevated gamma globin (HBG1/G2) levels exhibit mild or no symptoms. To recapitulate this natural phenomenon, the most coveted gene therapy approach is to edit the regulatory sequences of HBG1/G2 to reactivate them. By editing more than one regulatory sequence in the HBG promoter, the production of fetal hemoglobin (HbF) can be significantly increased.

View Article and Find Full Text PDF

Background: δβ-thalassemia/HPFH is an uncommon hemoglobinopathy characterized by decreased or the total absence of production of δ- and β-globin and increased HbF levels. Both these disorders have variable genotype and phenotype, but significant overlap in the clinical and laboratory findings. Given the lack of literature in this regard, the study aimed to estimate the prevalence of the disease and evaluate its clinical, hematological, and molecular profile in India.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!