Peptidyl Acyloxymethyl Ketones as Activity-Based Probes for the Main Protease of SARS-CoV-2*.

Chembiochem

Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium.

Published: December 2020

The global pandemic caused by SARS-CoV-2 calls for the fast development of antiviral drugs against this particular coronavirus. Chemical tools to facilitate inhibitor discovery as well as detection of target engagement by hit or lead compounds from high-throughput screens are therefore in urgent need. We here report novel, selective activity-based probes that enable detection of the SARS-CoV-2 main protease. The probes are based on acyloxymethyl ketone reactive electrophiles combined with a peptide sequence including unnatural amino acids that targets the nonprimed site of the main protease substrate binding cleft. They are the first activity-based probes for the main protease of coronaviruses and display target labeling within a human proteome without background. We expect that these reagents will be useful in the drug-development pipeline, not only for the current SARS-CoV-2, but also for other coronaviruses.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202000371DOI Listing

Publication Analysis

Top Keywords

main protease
16
activity-based probes
12
probes main
8
peptidyl acyloxymethyl
4
acyloxymethyl ketones
4
ketones activity-based
4
probes
4
main
4
protease
4
protease sars-cov-2*
4

Similar Publications

The 3-chymotrypsin-like protease (3CL-PR; also known as Main protease) of SARS-CoV-2 is a cysteine protease that is the target of the COVID-19 drug, Paxlovid. Here, we report for 3CL-PR, the pH-rate profiles of a substrate, an inhibitor, affinity agents, and solvent kinetic isotope effects (sKIEs) obtained under both steady-state and pre-steady-state conditions. "Bell-shaped" plots of log( / ) vs pH for the substrate (Abz)SAVLQ*SGFRK(Dnp)-NH and p vs pH for a peptide aldehyde inhibitor demonstrated that essential acidic and basic groups of p = 8.

View Article and Find Full Text PDF

SLP2 and MIC13 synergistically coordinate MICOS assembly and crista junction formation.

iScience

December 2024

Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Duesseldorf, Germany.

The MICOS complex, essential for cristae organization, comprises MIC10 and MIC60 subcomplexes, with MIC13 as a crucial subunit. mutations cause severe mitochondrial hepato-encephalopathy, cristae defects, and MIC10-subcomplex loss. We demonstrate that depletion of the mitochondrial protease YME1L in KO stabilizes MIC10-subcomplex, restoring MIC60-MIC10 interaction and crista junction (CJ) defects, indicating MIC13 is crucial for MIC10-subcomplex stabilization rather than MIC60-MIC10 bridging.

View Article and Find Full Text PDF

Lipid metabolism disorders are frequently noted in atopic dermatitis (AD) patients, prompting the long-term use of lipid-lowering drugs. However, the causal effects of circulating lipids and different lipid-lowering drugs on the risk of AD are not thoroughly understood. Using publicly available genome-wide association studies (GWAS) summary data from two different cohorts, a series of Mendelian randomization (MR) analyses were conducted to explore the causal effects of genetically proxied circulating lipids and lipid-lowering drugs on the risk of AD.

View Article and Find Full Text PDF

Simulated Gastrointestinal Fluids Impact the Stability of Polymer-Functionalized Selenium Nanoparticles: Physicochemical Aspects.

Int J Nanomedicine

December 2024

Division of Medical Physics and Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, 8010, Austria.

Background: Selenium (Se) is a vital micronutrient for maintaining homeostasis in the human body. Selenium nanoparticles (SeNPs) have demonstrated improved bioavailability compared to both inorganic and organic forms of Se. Therefore, supplementing with elemental Se in its nano-form is highly promising for biomedical applications related to Se deficiency.

View Article and Find Full Text PDF

Background: As an important prokaryotic model organism, Bacillus subtilis has been widely used in the industrial production of a variety of target products. The efficient secretion of target products has always been the main purpose of industrial microbial technology. The modification of gene regulatory networks is an important technical means to construct a factory of microbial cells that efficiently secretes target products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!