While beneficial in rehabilitation, aquatic exercise effects on cartilage and bone metabolism in young, healthy horses has not been well described. Therefore, 30 Quarter Horse yearlings (343 ± 28 kg; 496 ± 12 d of age) were stratified by age, body weight (BW), and sex and randomly assigned to 1 of 3 treatments for 140-d to evaluate effects of aquatic, dry, or no exercise on bone and cartilage metabolism in young horses transitioning to an advanced workload. Treatments included nonexercise control (CON; n = 10), dry treadmill (DRY; n = 10), or aquatic treadmill exercise (H2O; n = 10; water: 60% wither height, WH). Horses were housed individually (3.6 × 3.6 m) from 0600 to 1800 hours, allowed turnout (74 × 70 m) from 1800 to 0600 hours, and fed to meet or exceed requirements. During phase I (days 0 to 112), DRY and H2O walked on treadmills 30 min/d, 5 d/wk. Phase II (days 113 to 140) transitioned to an advanced workload 5 d/wk. Every 14-d, WH, hip height (HH), and BW were recorded. Left third metacarpal radiographs on days 0, 112, and 140 were analyzed for radiographic bone aluminum equivalence (RBAE). Every 28-d, serum samples were analyzed for osteocalcin and C-telopeptide crosslaps of type I collagen (CTX-1), and synovial fluid samples were analyzed for prostaglandin E2, collagenase cleavage neopeptide (C2C), collagenase of type I and type II collagen, and carboxypeptide of type II collagen using ELISAs. All data were analyzed using PROC MIXED of SAS, including random effect of horse within treatment, and repeated effect of day. Baseline treatment differences were accounted for using a covariate. There were treatment × day interactions (P < 0.01) where OC and CTX-1 remained consistent in both exercise groups while inconsistently increasing in CON. There were no treatment differences (P > 0.30) in RBAE, BW, or HH, but all increased over time (P < 0.01). There were no treatment × day interactions of synovial inflammation or markers of cartilage metabolism; however, there was an effect of day for each marker (P<0.03). Changes in biomarkers of cartilage turnover in horses exercised at the walk, whether dry or aquatic, could not be distinguished from horses with access to turnout alone. This study indicates that early forced exercise supports consistent bone metabolism necessary for uniform growth and bone development, and that there are no negative effects of buoyancy on cartilage metabolism in yearlings transitioned from aquatic exercise to a 28-d advanced workload.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431214 | PMC |
http://dx.doi.org/10.1093/jas/skaa239 | DOI Listing |
Diabetol Metab Syndr
January 2025
Department of Cardiology, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, 430074, Hubei, China.
Background: The triglyceride glucose-body mass index (TyG-BMI) is considered to be a reliable surrogate marker of insulin resistance (IR). However, limited evidence exists regarding its association with the severity of coronary artery disease (CAD), particularly in hypertensive patients with different glucose metabolic states, including those with H-type hypertension. This study aimed to investigate the relationship between TyG-BMI and CAD severity across different glucose metabolism conditions.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry, University of Manchester, Manchester, UK.
Cells display a range of mechanical activities generated by motor proteins powered through catalysis. This raises the fundamental question of how the acceleration of a chemical reaction can enable the energy released from that reaction to be transduced (and, consequently, work to be done) by a molecular catalyst. Here we demonstrate the molecular-level transduction of chemical energy to mechanical force in the form of the powered contraction and powered re-expansion of a cross-linked polymer gel driven by the directional rotation of artificial catalysis-driven molecular motors.
View Article and Find Full Text PDFSci Rep
January 2025
Biomedical Research Center, Qatar University, P.O Box 2713, Doha, Qatar.
Regular aerobic exercise has a significant impact on glucose metabolism and lipid profiles, contributing to overall health improvement. However, evidence for optimal exercise duration to achieve these effects is limited. This study aims to explore the effects of 4 and 8 weeks of moderate-intensity aerobic exercise on glucose metabolism, lipid profiles, and associated metabolic changes in young female students with insulin resistance and varying body mass, seeking to determine the optimal duration for physiological adaptations.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Health and Nutrition, Yamagata Prefectural Yonezawa University of Nutrition Sciences, 6-15-1, Torimachi, Yonezawa, Yamagata, 992-0025, Japan.
Colorectal cancer has the second highest mortality among cancer sites worldwide, with increasing morbidity, high recurrence rates, and even poorer postoperative quality of life. Therefore, preventive strategies for colorectal cancer should be established. This study aimed to cross-sectionally explore dietary patterns affecting the intestinal metabolism of bile acids (BAs), a risk factor for colorectal cancer, in young Japanese women.
View Article and Find Full Text PDFSci Rep
January 2025
Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd, Yunnan, 650106, China.
This study aimed to develop in vivo methods for assessing facial anti-glycation and anti-aging effects and to investigate the link between glycation and aging signs. We utilized an AGE reader to measure AGEs levels on the face and arms, establishing a correlation to validate the reader's use for facial AGEs detection. Then the product's 7-day anti-glycation effect was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!