Radical ring-opening copolymerization (rROP) between 2-methylene-1,3-dioxepane (MDO) and methacrylic acid N-hydroxysuccinimide ester (NHSMA) furnishes a reactive polyester-based linear copolymer precursor. Subsequent cross-linker mediated chain collapse affords degradable single-chain nanoparticles (DSCNPs). This methodology is an experimentally robust and straightforward route to main-chain degradable polymeric nanoparticles in the sub-30 nm size range.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc03792cDOI Listing

Publication Analysis

Top Keywords

degradable single-chain
8
single-chain nanoparticles
8
cross-linker mediated
8
mediated chain
8
chain collapse
8
general strategy
4
strategy degradable
4
nanoparticles cross-linker
4
collapse radical
4
radical copolymers
4

Similar Publications

Methods for the precise temporal control of cell surface receptor activation are indispensable for the investigation of signaling processes in mammalian cells. Optogenetics enables such precise control, but its application in primary cells is limited by the imperative for genetic manipulation of target cells. We here describe a method that overcomes this obstacle and enables the precise activation of the T cell receptor in nongenetically engineered human T cells by light.

View Article and Find Full Text PDF

Transferrin Receptor (TfR)-mediated transcytosis across the blood-brain barrier (BBB) enables the uptake of bispecific therapeutic antibodies into the brain. At therapeutically relevant concentrations, bivalent binding to TfR appears to reduce the transcytosis efficiency by receptor crosslinking. In this study, we aimed to improve BBB transcytosis of symmetric antibodies through minimizing their ability to cause TfR crosslinking.

View Article and Find Full Text PDF

A programmable arthritis-specific receptor for guided articular cartilage regenerative medicine.

Osteoarthritis Cartilage

December 2024

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212, USA; Center for Bone Biology, Vanderbilt University, Nashville, TN 37212, USA; Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37212, USA. Electronic address:

Objective: Investigational cell therapies have been developed as disease-modifying agents for the treatment of osteoarthritis (OA), including those that inducibly respond to inflammatory factors driving OA progression. However, dysregulated inflammatory cascades do not specifically signify the presence of OA. Here, we deploy a synthetic receptor platform that regulates cell behaviors in an arthritis-specific fashion to confine transgene expression to sites of cartilage degeneration.

View Article and Find Full Text PDF

Background: Cytokines have been promising cancer immunotherapeutics for decades, yet only two are licensed to date. Interleukin-12 (IL-12) is a potent regulator of cell-mediated immunity that activates NK cells and interferon-γ (IFNγ) production. It plays a central role in multiple pathways that can enhance cancer cell death and modify the tumor microenvironment (TME).

View Article and Find Full Text PDF

Chronic stress, a risk factor for many neuropsychiatric conditions, causes dysregulation in the immune system in both humans and animal models. Additionally, inflammation and synapse loss have been associated with deficits in social behavior. The complement system, a key player of innate immunity, has been linked to social behavior impairments caused by chronic stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!