Skeletal Phenotype Analysis of a Conditional Stat3 Deletion Mouse Model.

J Vis Exp

Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research center of Stomatology;

Published: July 2020

Similar Publications

BACKGROUND Cleidocranial dysplasia (CCD) is a rare (1: 1 000 000) autosomal dominant congenital skeletal dysplasia characterized by widely patent calvarial sutures, clavicular hypoplasia, supernumerary teeth, and short stature. Only a minority of the cases are diagnosed early after birth. We present another case of proven CCD presenting with typical neonatal phenotype to promote awareness of this rare disorder.

View Article and Find Full Text PDF

Tooth/skeletal dysplasia, such as hypophosphatasia (HPP), has been extensively studied. However, there are few definitive treatments for these diseases owing to the lack of an in vitro disease model. Cells differentiated from patient-derived induced pluripotent stem cells (iPSCs) demonstrate a pathological phenotype.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1) is a complex neurocutaneous disorder caused by pathogenic variants in the gene. Although genotype-phenotype correlation studies are increasing, robust clinically relevant correlations have remained limited. We conducted a retrospective analysis of data obtained from a cohort of 204 Hungarian individuals, with a mean age of 16 years (age range: 1-33 years).

View Article and Find Full Text PDF

Cardiomyopathy represents the most important life-limiting condition of Duchenne muscular dystrophy (DMD) patients after the age of 20. Genetic alterations in the DMD gene result in the absence of functional dystrophin protein, leading to skeletal/cardiac muscle impairment. The DMD incidence is one in 5000 live male births.

View Article and Find Full Text PDF

: Peroxisome proliferator-activated receptor gamma (PPARγ) is a fatty acid-binding transcription activator of the adipokine chemerin. The key role of PPARγ in adipogenesis was established by reports on adipose tissue-resident macrophages that express PPARγ. The present study examined PPARγ macrophages in human skeletal muscle tissues, their response to fatty acid (FA) species, and their correlations with age, obesity, adipokine expression, and an abundance of other macrophage phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!