Patient-specific stem cells derived from somatic cell nuclear transfer (SCNT) embryos or from induced pluripotent stem cells (iPSCs) could be used to treat various diseases with minimal immune rejection. Many studies using these cells have been conducted in rats and mice; however, there exist numerous dissimilarities between the rodents and humans limiting the clinical predictive power and experimental utility of rodent experiments alone. Nonhuman primates (NHPs) share greater homology to human than rodents in all respects, including genomics, physiology, biochemistry, and the immune system. Thus, experimental data obtained from monkey studies would be more predictive for designing an effective cell replacement therapy in humans. Unfortunately, there are few iPSC lines and even fewer SCNT lines that have been derived in NHPs, hampering broader studies in regenerative medicine. One promising potential therapy would be the replacement of dopamine neurons that are lost in Parkinson's disease. After dopamine depletion by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the African green monkey shows the most complete model of Parkinsonism compared with other species and brain pathology and behavioral changes are almost identical to those in humans after accidental exposure to MPTP. Therefore, we have developed a SCNT procedure to generate multiple pluripotent stem cell lines in this species for studies of possible treatment of Parkinsonism and for comparing with cells derived from iPSCs. Using 24 female monkeys as egg donors and 7 somatic cell donor monkeys, we have derived 11 SCNT embryonic stem cell lines that expressed typical stemness genes and formed all three germ layer derivatives. We also derived two iPSC lines using an episome-mediated reprogramming factor delivery system. This report describes the process for deriving these cell lines and proving their pluripotency for differentiation into various potentially therapeutic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/scd.2020.0059 | DOI Listing |
Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFBackground: Our previous study identified that Sildenafil (a phosphodiesterase type 5 [PDE5] inhibitor) is a candidate repurposable drug for Alzheimer's Disease (AD) using in silico network medicine approach. However, the clinically meaningful size and mechanism-of-actions of sildenafil in potential prevention and treatment of AD remind unknown.
Method: We conducted new patient data analyses using both the MarketScan® Medicare with Supplemental database (n = 7.
Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.
View Article and Find Full Text PDFBackground: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).
Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.
Alzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!