People can be exposed to zinc oxide (ZnO) by inhalation of consumer products or during industrial processes. Zinc oxide nanoparticle (NP) exposure can induce acute inhalation toxicity. The toxicological mechanisms underlying the acute effects on the lungs have long focused on the phagolysosomal dissolution of ZnO NPs in macrophages followed by the release of free Zn ions. However, we postulate an alternative mechanism based on the direct interaction of ZnO NPs with the lung surfactant (LS) layer covering the inside of the alveoli. Therefore, we tested the effect of ZnO NPs and Zn ions on the function of LS in vitro using the constrained drop surfactometer. We found that the ZnO NPs inhibited the LS function, whereas Zn ions did not. To examine the role of lung macrophages in the acute toxicity of inhaled ZnO NPs, mice were treated with Clodrosome, a drug that depletes alveolar macrophages, or Encapsome, the empty carrier of the drug. After macrophage depletion, the mice were exposed to an aerosol of ZnO NPs in whole body plethysmographs recording breathing patterns continuously. Mice in both groups developed shallow breathing (reduced tidal volume) shortly after the onset of exposure to ZnO NPs. This suggests a macrophage-independent mechanism of induction. This study shows that acute inhalation toxicity is caused by ZnO NP interaction with LS, independently of NP dissolution in macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1091581820933146DOI Listing

Publication Analysis

Top Keywords

zno nps
28
acute inhalation
12
inhalation toxicity
12
zno
10
lung surfactant
8
reduced tidal
8
tidal volume
8
zinc oxide
8
nps
7
acute
5

Similar Publications

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

The aqueous extract from the bark of Eucommia ulmoides serves as a rich source of bioactive compounds with numerous health benefits. The protocol here aims to explore the preparation of zinc oxide (ZnO) nanoparticles using the Eucommia ulmoides bark-mediated polyisoprene-rich aqueous extract. Meanwhile, the proposed protocol is associated with the preparation of wound healing material by easing the process.

View Article and Find Full Text PDF

There is a need for advanced developments to battle aggressive breast cancer variations and to address treatment resistance. In cancer therapy, ZnO nanoparticles (NPs) possess the ability to selectively and effectively induce apoptosis in cancer cells. There is an urgent necessity to create novel anti-cancer therapies, and recent studies indicate that ZnO nanoparticles have significant promise.

View Article and Find Full Text PDF

Zinc oxide nanoparticles (ZnO NPs) with varying levels of nitrogen (N) doping were synthesized using a straightforward sol-gel approach. The morphology and microstructure of the N-doped ZnO NPs were examined through techniques such as SEM, XRD, photoluminescence, and Raman spectroscopy. The characterization revealed visible changes in the morphology and microstructure resulting from the incorporation of nitrogen into the ZnO lattice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!