Effect of dilution on sedimentational separation of bacteria from blood.

Biotechnol Prog

Department of Chemical Engineering, Brigham Young University, Provo, Utah, USA.

Published: November 2020

Bacteria must be separated from septic whole blood in preparation for rapid antibiotic susceptibility tests. This work improves upon past work isolating bacteria from whole blood by exploring an important experimental factor: Whole blood dilution. Herein, we use the continuity equation to model red blood cell sedimentation and show that overall spinning time decreases as the blood is diluted. We found that the bacteria can also be captured more efficiently from diluted blood, up to approximately 68 ± 8% recovery (95% confidence interval). However, diluting blood both requires and creates extra fluid that end users must handle; an optimal dilution, which maximizes bacteria recovery and minimizes waste, was found to scale with the square root of the whole blood hematocrit. This work also explores a hypothesis that plasma backflow, which occurs as red cells move radially outward, causes bacterial enrichment in the supernatant plasma with an impact proportional to the plasma backflow velocity. Bacteria experiments carried out with diluted blood demonstrate such bacterial enrichment, but not in the hypothesized manner as enrichment occurred only in undiluted blood samples at physiological hematocrit.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.3056DOI Listing

Publication Analysis

Top Keywords

blood
11
bacteria blood
8
diluted blood
8
plasma backflow
8
bacterial enrichment
8
bacteria
6
dilution sedimentational
4
sedimentational separation
4
separation bacteria
4
blood bacteria
4

Similar Publications

Introduction: Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.

View Article and Find Full Text PDF

The current study was deployed to evaluate the role of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and miR-155, along with the inflammatory markers, TNFα and IL-6, and the adhesion molecule, cluster of differentiation 106 (CD106), in Behçet's disease (BD) pathogenesis. The study also assessed MALAT1/miR-155 as promising diagnostic and prognostic biomarkers for BD. The current retrospective case-control study included 74 Egyptian BD patients and 50 age and sex-matched controls.

View Article and Find Full Text PDF

Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.

View Article and Find Full Text PDF

Purpose: Locally advanced colorectal tumors frequently invade adjacent organs, particularly the urinary bladder in the sigmoid colon and upper rectum, complicating multivisceral resections. This study compared postoperative outcomes of partial cystectomy (PC) and total cystectomy (TC) in patients with locally advanced colorectal cancer.

Methods: A systematic review was conducted in PubMed, Scopus, Central Register of Clinical Trials, and Web of Science for studies published up to November 2024.

View Article and Find Full Text PDF

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!