Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: We aimed to develop an artificial intelligence (AI) system for the real-time diagnosis of pharyngeal cancers.
Methods: Endoscopic video images and still images of pharyngeal cancer treated in our facility were collected. A total of 4559 images of pathologically proven pharyngeal cancer (1243 using white light imaging and 3316 using narrow-band imaging/blue laser imaging) from 276 patients were used as a training dataset. The AI system used a convolutional neural network (CNN) model typical of the type used to analyze visual imagery. Supervised learning was used to train the CNN. The AI system was evaluated using an independent validation dataset of 25 video images of pharyngeal cancer and 36 video images of normal pharynx taken at our hospital.
Results: The AI system diagnosed 23/25 (92%) pharyngeal cancers as cancers and 17/36 (47%) non-cancers as non-cancers. The transaction speed of the AI system was 0.03 s per image, which meets the required speed for real-time diagnosis. The sensitivity, specificity, and accuracy for the detection of cancer were 92%, 47%, and 66% respectively.
Conclusions: Our single-institution study showed that our AI system for diagnosing cancers of the pharyngeal region had promising performance with high sensitivity and acceptable specificity. Further training and improvement of the system are required with a larger dataset including multiple centers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/den.13800 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!