A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Diagnosis of pharyngeal cancer on endoscopic video images by Mask region-based convolutional neural network. | LitMetric

Objectives: We aimed to develop an artificial intelligence (AI) system for the real-time diagnosis of pharyngeal cancers.

Methods: Endoscopic video images and still images of pharyngeal cancer treated in our facility were collected. A total of 4559 images of pathologically proven pharyngeal cancer (1243 using white light imaging and 3316 using narrow-band imaging/blue laser imaging) from 276 patients were used as a training dataset. The AI system used a convolutional neural network (CNN) model typical of the type used to analyze visual imagery. Supervised learning was used to train the CNN. The AI system was evaluated using an independent validation dataset of 25 video images of pharyngeal cancer and 36 video images of normal pharynx taken at our hospital.

Results: The AI system diagnosed 23/25 (92%) pharyngeal cancers as cancers and 17/36 (47%) non-cancers as non-cancers. The transaction speed of the AI system was 0.03 s per image, which meets the required speed for real-time diagnosis. The sensitivity, specificity, and accuracy for the detection of cancer were 92%, 47%, and 66% respectively.

Conclusions: Our single-institution study showed that our AI system for diagnosing cancers of the pharyngeal region had promising performance with high sensitivity and acceptable specificity. Further training and improvement of the system are required with a larger dataset including multiple centers.

Download full-text PDF

Source
http://dx.doi.org/10.1111/den.13800DOI Listing

Publication Analysis

Top Keywords

pharyngeal cancer
16
video images
16
diagnosis pharyngeal
8
endoscopic video
8
convolutional neural
8
neural network
8
real-time diagnosis
8
images pharyngeal
8
system
7
images
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!