In artificial intelligence and deep learning applications, data collection from a variety of objects is of great interest. One way to support such data collection is to use very thin, mechanically flexible sensor sheets, which can cover an object without altering the original shape. This study proposes a thin, macroscale, flexible, tactile pressure sensor array fabricated by a simple process for economical device applications. Using laser-induced graphene, a transfer process, and a printing method, a relatively stable, reliable, macroscale, thin (∼300 μm), flexible, tactile pressure sensor is realized. The detectable pressure range is about tens to hundreds of kPa. Then, as a proof-of-concept, the uniformity, sensitivity, repeatability, object mapping, finger pressure distribution, and pressure mapping are demonstrated under bending conditions. Although many flexible, tactile pressure sensors have been reported, the proposed structure has the potential for macroscale, thin, flexible, tactile pressure sensor sheets because of the simple and easy fabrication process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377324 | PMC |
http://dx.doi.org/10.1021/acsomega.0c02337 | DOI Listing |
Natl Sci Rev
January 2025
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China.
Affordable high-resolution cameras and state-of-the-art computer vision techniques have led to the emergence of various vision-based tactile sensors. However, current vision-based tactile sensors mainly depend on geometric optics or marker tracking for tactile assessments, resulting in limited performance. To solve this dilemma, we introduce optical interference patterns as the visual representation of tactile information for flexible tactile sensors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
College of Electrical and Information Engineering, SANYA Offshore Oil and Gas Research Institute, Northeast Petroleum University, Daqing 163318, China.
Integrating ZnS:Cu@AlO/polydimethylsiloxane (PDMS) flexible matrices with optical fibers is crucial for the development of practical passive sensors. However, the fluorescence coupling efficiency is constrained by the small numerical aperture of the fiber, leading to a reduction in sensor sensitivity. To mitigate this limitation, a microsphere lens was fabricated at the end of the multimode fiber, which resulted in a 21.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China; The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China.
Flexible pressure sensor is a crucial component of tactile sensors and plays an integral role in numerous significant fields. Despite the considerable effort put forth, how to further improve sensitivity with ingenious yet easy-to-manufacture structures and apply them to emerging fields such as structure/materials recognition, human motion monitoring, and human-machine interaction remains a challenge. Here, we develop a highly sensitive flexible capacitive pressure sensor featuring a structured electrode layer with embedded microcracks and a dielectric layer with micro-convex structures, which are combined with an iontronic interface.
View Article and Find Full Text PDFSmall
December 2024
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
In order to achieve interaction and collaboration with humans, robots need to have the ability for tactile perception of simulating human. Traditional methods use electrically connected sensors with complex arrays, leading to intricate wiring, high manufacturing costs, and demanding current environments. A flexible sensor with simple structure, easy preparation process, and low cost based on triboluminescence effect is proposed in this paper, which avoids the complex array and wiring of traditional sensors.
View Article and Find Full Text PDFMed Humanit
January 2025
LLM, University of Leeds, Leeds, UK
Being deafblind means my perception differs profoundly from those who are conventionally sighted and have non-impaired hearing. A lot of hidden knowledge is to be found in the disparity between these differing experiences that could be of great value in developing assistive technologies that have a broad scope to engage with both disabled and non-disabled users. This article explores the balancing act between sensory loss and the potential inherent in all of us and how this should be part of the design process of haptic assistive technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!