Efficient and Environmentally Friendly Adsorbent Based on β-Ketoenol-Pyrazole-Thiophene for Heavy-Metal Ion Removal from Aquatic Medium: A Combined Experimental and Theoretical Study.

ACS Omega

Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis Division (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve 1348, Belgium.

Published: July 2020

A new sustainable and environmentally friendly adsorbent based on a β-ketoenol-pyrazole-thiophene receptor grafted onto a silica surface was developed and applied to the removal of heavy-metal ions (Pb(II), Cu(II), Zn(II), and Cd(II)) from aquatic medium. The new material was well characterized and confirms the success of covalent binding of the receptor on the silica surface. The effect of environmental parameters on adsorption including pH, contact time, temperature, and the initial concentration were investigated. The maximum adsorption capacities of for Pb(II), Cu(II), Zn(II), and Cd(II) ions were 102.20, 76.42, 68.95, and 32.68 mg/g, respectively, at 30 min and pH = 6. The adsorption isotherms, kinetics, and thermodynamic process were investigated and showed efficiency and selectivity toward Pb(II) and good regeneration performance. Density functional theory, noncovalent-interaction, and quantum theory of atoms in molecules calculations were used to study and to gain a deeper understanding of both the adsorption mechanism and selectivity of metal ions onto the adsorbent. Accordingly, metal ions such as Pb(II), Cu(II), and Zn(II) were bidentate coordinated with the adsorbent by nitrogen and oxygen atoms of the Schiff base C=N and hydroxyl group -OH, respectively, to form stable complexes. Whereas Cd(II) was coordinated in a monodentate fashion with oxygen atom of the hydroxyl group. Furthermore, the affinity of toward the metal ions was decreased in the order of Pb(II) > Cu(II) > Zn(II) > Cd(II), in good agreement with the experimental results. All these results highlight that has good potential to be an advanced adsorbent for the removal of lead ions from real water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377074PMC
http://dx.doi.org/10.1021/acsomega.0c01616DOI Listing

Publication Analysis

Top Keywords

pbii cuii
16
cuii znii
16
znii cdii
12
metal ions
12
environmentally friendly
8
friendly adsorbent
8
adsorbent based
8
based β-ketoenol-pyrazole-thiophene
8
aquatic medium
8
silica surface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!