Peripheral retinal lesions substantially increase the risk of diabetic retinopathy and retinopathy of prematurity. The peripheral changes can be visualized in wide field imaging, which is obtained by combining multiple images with an overlapping field of view using mosaicking methods. However, a robust and accurate registration of mosaicking techniques for normal angle fundus cameras is still a challenge due to the random selection of matching points and execution time. We propose a method of retinal image mosaicking based on scale-invariant feature transformation (SIFT) feature descriptor and Voronoi diagram. In our method, the SIFT algorithm is used to describe local features in the input images. Then the input images are subdivided into regions based on the Voronoi method. Each pair of Voronoi regions is matched by the method zero mean normalized cross correlation. After matching, the retinal images are mapped into the same coordinate system to form a mosaic image. The success rate and the mean registration error (RE) of our method were compared with those of other state-of-the-art methods for the P category of the fundus image registration database. Experimental results show that the proposed method accurately registered 42% of retinal image pairs with a mean RE of 3.040 pixels, while a lower success rate was observed in the other four state-of-the-art retinal image registration methods GDB-ICP (33%), Harris-PIIFD (0%), HM-2016 (0%), and HM-2017 (2%). The proposed method outperforms state-of-the-art methods in terms of quality and running time and reduces the computational complexity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361374 | PMC |
http://dx.doi.org/10.1117/1.JMI.7.4.044001 | DOI Listing |
JCI Insight
January 2025
Dianne Hoppes Nunnally Laboratory Research Division, Joslin Diabetes Center, Boston, United States of America.
Background: We aimed to characterize factors associated with the under-studied complication of cognitive decline in aging people with long-duration type 1 diabetes (T1D).
Methods: Joslin "Medalists" (n = 222; T1D ≥ 50 years) underwent cognitive testing. Medalists (n = 52) and age-matched non-diabetic controls (n = 20) underwent neuro- and retinal imaging.
Jpn J Ophthalmol
January 2025
Department of Ophthalmology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minami-Koshigaya Koshigaya, Saitama, 343-8555, Japan.
Purpose: To compare the amplitudes and implicit times of the oscillatory (OPs) of the full-field electroretinograms (ERGs) to those of the 30 Hz flicker ERGs in differentiating eyes with diabetic retinopathy (DR) from normal eyes.
Study Design: Single-center observational study.
Methods: Full-field ERGs were recorded in 55 patients with Type 2 diabetes mellitus (DM) and 20 normal control subjects.
Clin Ophthalmol
January 2025
University Eye Clinic Maastricht, Maastricht, The Netherlands.
Purpose: Cysticercosis, caused by Taenia solium larvae, can affect various ocular and extraocular structures, leading to significant morbidity. Ultrasound B-scan imaging plays a pivotal role in diagnosing and classifying cysticercosis lesions. The aim of the study was to describe the ultrasound B-scan characteristics of ocular and extraocular cysticercosis, proposing a classification system based on anatomical localization to enhance understanding and management.
View Article and Find Full Text PDFTurk J Ophthalmol
January 2025
İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Ophthalmology, İstanbul, Türkiye.
Jeune syndrome (JS), first described by Jeune as asphyxiating thoracic dystrophy, is an autosomal recessive osteochondrodysplasia with characteristic skeletal abnormalities and variable renal, hepatic, pancreatic, and ocular complications. Approximately 1 in every 100,000 to 130,000 babies is born with JS. Most patients with JS have respiratory distress due to inadequate lung development and many lose their lives due to respiratory failure.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy.
The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!