AI Article Synopsis

Article Abstract

Postnatal administration of phencyclidine (PCP) in rodents causes major brain dysfunction leading to severe disturbances in behavior lasting into adulthood. This model is routinely employed to model psychiatric disorders such as schizophrenia, as it reflects schizophrenia-related brain disturbances including increased apoptosis, and disruptions to myelin and plasticity processes. Leucine-rich repeat and Immunoglobin-like domain-containing protein 1 (Lingo-1) is a potent negative regulator of both axonal myelination and neurite extension. The Nogo receptor (NgR)/tumor necrosis factor (TNF) receptor orphan Y (TROY) and/or p75 neurotrophin receptor (p75) complex, with no lysine (K) (WNK1) and myelin transcription factor 1 (Myt1) are co-receptors or cofactors in Lingo-1 signaling pathways in the brain. We have examined the developmental trajectory of these proteins in a neurodevelopmental model of schizophrenia using PCP to determine if Lingo-1 pathways are altered in the prefrontal cortex throughout different stages of life. Sprague-Dawley rats were injected with PCP (10 mg/kg) or saline on postnatal days (PN)7, 9, and 11 and killed at PN12, 5 or 14 weeks for measurement of Lingo-1 signaling proteins in the prefrontal cortex. Myt1 was decreased by PCP at PN12 (=0.045), and at 14 weeks PCP increased Lingo-1 (=0.037), TROY (=0.017), and WNK1 (=0.003) expression. This is the first study reporting an alteration in Lingo-1 signaling proteins in the rat prefrontal cortex both directly after PCP treatment in early development and in adulthood. We propose that Lingo-1 pathways may be negatively regulating myelination and neurite outgrowth following the administration of PCP, and that this may have implications for the cortical dysfunction observed in schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373234PMC
http://dx.doi.org/10.1042/NS20180059DOI Listing

Publication Analysis

Top Keywords

lingo-1 signaling
16
prefrontal cortex
16
administration phencyclidine
8
lingo-1
8
proteins prefrontal
8
myelination neurite
8
lingo-1 pathways
8
signaling proteins
8
pcp
7
perinatal administration
4

Similar Publications

This study aimed to examine reticulon 4 (RTN4), neurite outgrowth inhibitor protein expression that changes in high-altitude traumatic brain injury (HA-TBI) and affects on blood-brain barrier's (BBB) function. C57BL/6J 6-8-week-old male mice were used for TBI model induction and randomized into the normal altitude group and the 5000-m high-altitude (HA) group, each group was divided into control (C) and 8h/12h/24h/48h-TBI according to different times post-TBI. Brain water content (BWC) and modified Neurological Severity Score were measured, RTN4 and autophagy-related indexes (Beclin1, LC3B, and SQSTM1/p62) were detected by western blot, immunofluorescence technique, and PCR in peri-injury cortical tissues.

View Article and Find Full Text PDF

Multiple sclerosis [MS] is a progressive autoimmune condition that primarily affects young people and is characterized by demyelination and neurodegeneration of the central nervous system [CNS]. This in-depth review explores the complex involvement of oligodendrocytes, the primary myelin- producing cells in the CNS, in the pathophysiology of MS. It discusses the biochemical processes and signalling pathways required for oligodendrocytes to function and remain alive, as well as how they might fail and cause demyelination to occur.

View Article and Find Full Text PDF

Structural neuroplasticity such as neurite extension and dendritic spine dynamics is enhanced by brain-derived neurotrophic factor (BDNF) and impaired by types of inhibitory molecules that induce growth cone collapse and actin depolymerization, for example, myelin-associated inhibitors, chondroitin sulfate proteoglycans, and negative guidance molecules. These inhibitory molecules can activate RhoA/rho-associated coiled-coil containing protein kinase (ROCK) signaling (known to restrict structural plasticity). Intermittent hypoxia (IH) and high-intensity interval training (HIIT) are known to upregulate BDNF that is associated with improvements in learning and memory and greater functional recovery following neural insults.

View Article and Find Full Text PDF
Article Synopsis
  • Acupuncture and moxibustion, traditional Chinese therapies, have been used for centuries, but there's limited research comparing their effects on treating cerebral infarction.
  • In this study, 80 rats were divided into five groups to assess the impact of these treatments on various neurological and cellular markers after inducing a stroke-like condition.
  • Results showed both acupuncture and moxibustion effectively reduced nerve signaling associated with injury and improved neurological function, indicating that they have similar therapeutic effects in this context.
View Article and Find Full Text PDF

The Initial Myelination in the Central Nervous System.

ASN Neuro

March 2023

Department of Human Anatomy and Cell Science, 8664University of Manitoba, Winnipeg, Manitoba, Canada.

Myelination contributes not only to the rapid nerve conduction but also to axonal insulation and protection. In the central nervous system (CNS), the initial myelination features a multistep process where oligodendrocyte precursor cells undergo proliferation and migration before differentiating into mature oligodendrocytes. Mature oligodendrocytes then extend processes and wrap around axons to form the multilayered myelin sheath.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!