Premature ovarian failure (POF) is one of the principal causes of female infertility, and although its causes are complex and diverse, autoimmune deficiency may be involved. Human umbilical cord mesenchymal stem cells (UCMSCs) can be used for tissue regeneration and repair. Therefore, the present study was designed to determine the role of UCMSCs in immune factor-induced POF in rats. In this study, different concentrations of UCMSCs were injected into induced POF rats. Ovarian functions were examined by evaluating the estrus cycle, follicular morphology, hormonal secretion, and the proliferation and apoptosis of granulosa cells. Our results showed that the estrus cycle of rats returned to normal and follicular development was significantly improved after transplantation of UCMSCs. In addition, serum concentrations of 17-estradiol (E2), progesterone (P4), and anti-Müllerian hormone (AMH) increased significantly with treatment. Transplantation of UCMSCs also reduced the apoptosis of granulosa cells and promoted the proliferation of granulosa cells. All of these improvements were dose dependent. Furthermore, the results of related gene expression showed that transplanted human UCMSCs upregulated the expression of Bcl-2, AMH, and FSHR in the ovary of POF rats and downregulated the expression of caspase-3. These results further validated the potential mechanisms of promoting the release of cell growth factors and enhancing tissue regeneration and provide a theoretical basis for the clinical application of stem cells in the treatment of premature ovarian failure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7355366 | PMC |
http://dx.doi.org/10.1155/2020/3249495 | DOI Listing |
Ginekol Pol
January 2025
Department of Clinical Dietetics, Faculty of Health Sciences, Medical University of Warsaw, Poland, Poland.
Anti-Müllerian hormone (AMH), also known as Müller duct inhibitory factor and primarily known for its role in sexual differentiation. In female fetuses, AMH production by granulosa cells begins around the 36th week of gestation and continues in women until menopause. It is becoming more significant in the endocrine and gynecological diagnosis of adult women.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China. Electronic address:
Premature Ovarian Insufficiency refers to the premature decline in ovarian function before the age of 40, resulting in menstrual irregularities or complete cessation of menstruation, and affecting fertility. Widely used bisphenol compounds may have potential health effects, including premature ovarian insufficiency (POI). This study employs computational biology and bioinformatics to investigate the effects of bisphenols (BPs) on POI.
View Article and Find Full Text PDFReprod Fertil Dev
January 2025
CNRS, INRAE, Université de Tours, PRC, Nouzilly, France.
Female infertility, which affects 10-20% of couples worldwide, is a growing health concern in developing countries. It can be caused by multiple factors, including reproductive disorders, hormonal dysfunctions, congenital malformations and infections. In vitro and in vivo studies have shown that plant extracts regulate gonadotropin-releasing hormone, kisspeptin, and gonadotropin expression and/or secretion at the hypothalamic-pituitary level and modulate somatic and germ cells, such as steroidogenesis, proliferation, apoptosis, and oxidative stress at the ovarian level.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, People's Republic of China.
Background: Regenerative medicine researches have shown that mesenchymal stem cells (MSCs) may be an effective treatment method for premature ovarian insufficiency (POI). However, the efficacy of MSCs is still limited.
Purpose: This study aims to explain whether salidroside and MSCs combination is a therapeutic strategy to POI and to explore salidroside-enhanced MSCs inhibiting ferroptosis via Keap1/Nrf2/GPX4 signaling.
Life Med
April 2024
The State Key Laboratory for Complex Severe and Rare Diseases, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!