The conformation and configuration at the central nitrogen of the adduct 8-(N-fluoren-2-ylamino)-2'-deoxyguanosine 5'-monophosphate has been investigated by high-field 13C and 15N NMR spectroscopy. One-bond nitrogen-hydrogen coupling constants and 13C chemical shifts for the adduct as well as for the model compounds diphenylamine, 4-nitrodiphenylamine and 2-aminofluorene have been measured in nonaqueous solutions. The data indicate a near planar configuration at the amine nitrogen that links the guanine and fluorene rings of the adduct. The orientations about the guanyl-nitrogen and fluorenyl-nitrogen bonds place the two ring systems in either perpendicular (Type A) or helical (Type B) conformations. It is suggested, based on structural similarities to diarylamines, that the G-N-C bond angle of the adduct is greater than 120 degrees in order to reduce unfavorable steric interactions between the two ring systems. Space-filling molecular models of the adduct in duplex DNA show that the aminofluorene moiety can be oriented into both Type A and Type B conformations within the major groove. The configuration at nitrogen of diphenylamine, 4-nitrodiphenylamine and 2-aminofluorene has also been examined.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.1986.10508474DOI Listing

Publication Analysis

Top Keywords

conformation configuration
8
configuration central
8
amine nitrogen
8
13c 15n
8
15n nmr
8
nmr spectroscopy
8
diphenylamine 4-nitrodiphenylamine
8
4-nitrodiphenylamine 2-aminofluorene
8
ring systems
8
type conformations
8

Similar Publications

Camellia-oil trees are economically valuable, oil-rich species within the genus Camellia, family Theaceae. Among these species, C. oleifera, a member of Section Oleifera in the genus, is the most extensively cultivated in China.

View Article and Find Full Text PDF

Synthesis and Chemical Structure of the Cyclic Heptapeptide Stylissamide H.

J Nat Prod

January 2025

Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.

We investigated the chemical structures and conformational isomers of the cyclic heptapeptides stylissamide H and euryjanicin A isolated from marine sources. Despite sharing the same molecular structure, stylissamide H and euryjanicin A exhibit different conformational isomers in solution and solid states. The main difference arises from the configurations of the two Pro residues.

View Article and Find Full Text PDF

Conformational flexibility of human ribokinase captured in seven crystal structures.

Int J Biol Macromol

January 2025

Department of Biochemistry, Memorial University of Newfoundland, 45 Arctic Avenue, St. John's, Newfoundland and Labrador, Canada. Electronic address:

d-ribose is a critical sugar substrate involved in the biosynthesis of nucleotides, amino acids, and cofactors, with its phosphorylation to ribose-5-phosphate by ribokinase (RK) constituting the initial step in its metabolism. RK is conserved across all domains of life, and its activity is significantly enhanced by monovalent metal (M) ions, particularly K, although the precise mechanism of this activation remains unclear. In this study, we present several crystal structures of human RK in both unliganded and substrate-bound states, offering detailed insights into its substrate binding process, reaction mechanism, and conformational changes throughout the catalytic cycle.

View Article and Find Full Text PDF

Allosteric regulation is a powerful mechanism for controlling the efficiency of enzymes. Deciphering the evolutionary mechanisms by which allosteric properties have been acquired in enzymes is of fundamental importance. We used the malate (MalDH) and lactate deydrogenases (LDHs) superfamily as model to elucidate this phenomenon.

View Article and Find Full Text PDF

In the wake of the pandemic, peptidyl protease inhibitors with Pro-based rigid Leu mimetics at the P position have emerged as potent drug candidates against the SARS-CoV-2 main protease. This success is intuitively attributed to the enhanced hydrophobic interactions and rigidity of Pro-based rigid Leu mimetics in the literature. However, the tertiary amide of proline P derivatives, which hinders the formation of a critical hydrogen bond with the enzyme active site, and the constrained PP conformation, which contradicts the protease preferred β-strand conformation, represent two overlooked disadvantages associated with these inhibitors over traditional inhibitors and, theoretically, should adversely affect their potency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!