Preserved rice ( L.) seeds stored for nearly a century as an emergency food stocks from the Mikawa area were investigated for their genetic diversity. Morphologically, the seeds appeared to be typical Japonica. One chloroplast INDEL , two nuclear INDELs and , and three SNP markers in were amplified to characterize the molecular profile. The efficiency of amplification varied among the markers. Most of preserved seeds were classified as Japonica, but some were identified as Indica. The heterozygous genotypes detected suggested a high frequency of outcrossing at that time. On the other hand, 21 SSR markers showed quite a high degree of amplification efficiency. Principal coordinate analysis and STRUCTURE analysis based on the SSR polymorphisms proved that the preserved seeds contained alleles that were not detected among current landraces and breeding varieties, and there were the expected three subpopulations among 96 preserved seeds. These results indicated that these preserved seeds from Mikawa area in Meiji era had high genetic diversity and consisted of some subpopulations including Indica landraces with typical Japonica seed shape. These lines were considered to have been lost from current genetic resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372032 | PMC |
http://dx.doi.org/10.1270/jsbbs.19143 | DOI Listing |
Alzheimers Dement
December 2024
Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
Alzheimers Dement
December 2024
Byrd Alzheimer's Center & Research Institute, Tampa, FL, USA.
Background: BIN1, the second strongest GWAS risk factor for late-onset Alzheimer's disease (AD), encodes a nucleocytoplasmic adaptor protein that plays many roles in multiple tissue and cell types. It is known that BIN1 can directly bind to tau in vitro, and neuronal BIN1 expression decreases in patients with AD. Accumulation of intracellular hyperphosphorylated tau is a hallmark pathogenic feature of AD and related tauopathies.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant Biology, Foran Hall, Rutgers University, New Brunswick, NJ, United States.
The stem canker disease eastern filbert blight (EFB), caused by , is a major impediment of European hazelnut () production in the United States. While most European hazelnut cultivars are highly susceptible to the pathogen, which remains confined to North America, EFB resistant and tolerant genotypes occur in the gene pool at low frequency. At Rutgers University, New Brunswick, NJ, USA, 5,226 trees were grown from open pollinated seeds collected from Russia, Crimea, Poland, Turkey, Estonia, Latvia, Lithuania, Moldova, Azerbaijan, Italy, and the Republic of Georgia between 2002 to 2010.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
Ultrasmall-scale semiconductor devices (≤5 nm) are advancing technologies, such as artificial intelligence and the Internet of Things. However, the further scaling of these devices poses critical challenges, such as interface properties and oxide quality, particularly at the high-/semiconductor interface in metal-oxide-semiconductor (MOS) devices. Existing interlayer (IL) methods, typically exceeding 1 nm thickness, are unsuitable for ultrasmall-scale devices.
View Article and Find Full Text PDFPlant Foods Hum Nutr
December 2024
Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Mérida, 97203, Yucatán, México.
The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!