RNAi suppressor: The hidden weapon of SARS-CoV.

J Biosci

Molecular Biology Department, Prantae Solutions Private Limited, Bhubaneswar 751 024, India.

Published: August 2020

The two biological evidences to endorse the antiviral activity of RNA interference (RNAi) are biogenesis of viral-siRNA (v-siRNA) by the host and encoding of RNAi-suppressor protein by viral genome. It has been recently established that mammals and mammalian cell lines mount antiviral RNAi to defend themselves against the invading viruses. The large part of viral pathogenicity is also due to the RNAi suppressor proteins. In this context it is only natural to ask what kinds of RNAi suppressors are encoded by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the central character of the present pandemic. The following mini review addresses this question.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363689PMC
http://dx.doi.org/10.1007/s12038-020-00071-0DOI Listing

Publication Analysis

Top Keywords

rnai suppressor
8
rnai
5
suppressor hidden
4
hidden weapon
4
weapon sars-cov
4
sars-cov biological
4
biological evidences
4
evidences endorse
4
endorse antiviral
4
antiviral activity
4

Similar Publications

Inactivation of TACC2 epigenetically represses CDKN1A and confers sensitivity to CDK inhibitors.

Med

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China. Electronic address:

Background: The genomic landscape of esophageal squamous cell carcinoma (ESCC) has been characterized extensively, but there remains a significant need for actionable targets and effective therapies.

Methods: Here, we perform integrative analysis of genome-wide loss of heterozygosity and expression to identify potential tumor suppressor genes. The functions and mechanisms of one of the candidates, TACC2, are then explored both in vitro and in vivo, leading to the proposal of a therapeutic strategy based on the concept of synthetic lethality.

View Article and Find Full Text PDF

(tomato leaf curl New Delhi virus, ToLCNDV), is member of the genus , family , is a prolific bipartite whitefly transmitted begomovirus in the Indian sub-continent has a wide host range, including solanaceous, cucurbitaceous and other plants. Recently, dsRNA-mediated non-transgenic approaches have been promising in managing plant viruses. Such an approach could be effective if the pathogenicity determinants of a virus are targeted.

View Article and Find Full Text PDF

Targeting viral suppressor of RNAi confers anti-coronaviral activity.

Mol Ther

January 2025

State Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China. Electronic address:

Infections caused by coronaviruses are persistent threats to human health in recent decades, necessitating the development of innovative anti-coronaviral therapies. RNA interference (RNAi) is a conserved cell-intrinsic antiviral mechanism in diverse eukaryotic organisms, including mammals. To counteract, many viruses encode viral suppressors of RNAi (VSRs) to evade antiviral RNAi, implying that targeting VSRs could be a promising strategy to develop antiviral therapies.

View Article and Find Full Text PDF

CDK12 antagonizes a viral suppressor of RNAi to modulate antiviral RNAi in .

mBio

January 2025

Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.

The primary antiviral immunity in insects is mediated by the RNA interference (RNAi) pathway. To counteract this antiviral RNAi response, viruses employ virulence factors known as viral suppressors of RNAi (VSR). The question of whether host factors can activate a counter-counter-defense mechanism to cope with VSR-mediated RNA silencing suppression remains unanswered.

View Article and Find Full Text PDF

In plants, RNA interference (RNAi) serves as a critical defense mechanism against viral infections by regulating gene expression. However, viruses have developed RNA silencing suppressor (RSS) proteins to evade this defense mechanism. The High Plains wheat mosaic virus (HPWMoV) is responsible for the High Plains disease in wheat and produces P7 and P8 proteins, which act as RNA silencing suppressors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!