This study evaluated the effect of feeding a palmitic acid-enriched supplement on production responses and nitrogen metabolism of mid-lactating Holstein and Jersey cows. Eighty mid-lactating dairy cows, 40 Holstein and 40 Jersey, were used in a randomized complete block design with a split-plot arrangement; the main plot was breed and the subplot was fatty acid treatment. Cows within each breed were assigned to 1 of 2 treatments: (1) control diet with no fat supplement or (2) control diet plus a palmitic acid-enriched supplement dosed at 1.5% of diet dry matter (PA treatment). The treatment period was 6 wk with the final 3 wk used for data and sample collection. There were no treatment × breed interactions for the variables analyzed. Compared with control, PA treatment increased milk fat yield (1.36 vs. 1.26 kg/d) and tended to increase 3.5% fat-corrected milk (35.6 vs. 34.0 kg/d) and energy-corrected milk (35.7 vs. 34.1 kg/d). There was no effect of PA treatment on dry matter intake, milk yield, milk protein yield, milk lactose yield, body condition score, body weight (BW) change, nitrogen intake, and variables related to nitrogen metabolism and excretion. Compared with Holstein cows, Jersey cows had greater dry matter intake as a percent of BW (4.90 vs. 3.37% of BW) and lower milk production (29.6 vs. 32.7 kg/d) and milk lactose yield (1.58 vs. 1.42 kg/d), but tended to have greater milk fat yield (1.36 vs. 1.26 kg/d). There was a breed effect on BW change; Holstein cows gained 0.385 kg/d during the experiment, and Jersey cows gained 0.145 kg/d. Jersey cows had lower nitrogen intake (636 vs. 694 g/d), blood urea nitrogen (12.6 vs. 13.8 mg/dL), urine total nitrogen (125 vs. 145 g/d), and urine total nitrogen as a percent of nitrogen intake (19.5 vs. 21.1%). Overall, feeding a palmitic acid-enriched supplement increased milk fat yield as well as dry matter and fiber digestibility in both Holstein and Jersey cows. The PA treatment did not have any major effects on nitrogen metabolism in both Holstein and Jersey cows. In addition, our results indicated that Jersey cows had lower urinary nitrogen excretion (g/d) than Holstein cows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2020-18232 | DOI Listing |
J Dairy Sci
December 2024
Food Chemistry and Technology Department, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland; VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland. Electronic address:
This study compared the impact of 2 pasture-based feeding systems, namely a traditional perennial ryegrass (PRG) diet, and a recently introduced, more sustainable multispecies swards (MSS) diet, on the functional lipid profile of raw milk. In addition to the 2 pasture diets, the study uniquely examined the combined effects of breed, namely Holstein-Friesian (HF) or Jersey Holstein-Friesian (JFX), and lactation stage in Ireland, spanning from March to November. Bulk milk samples (n = 144 yearly) for the 4 groups examined were collected for 4 weeks per each of the 9 mo specified.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602; Council on Dairy Cattle Breeding, Bowie, MD 20716.
The US dairy cattle genetic evaluation is currently a multistep process, including multibreed traditional BLUP estimations followed by single-breed SNP effects estimation. Single-step GBLUP (ssGBLUP) combines pedigree and genomic data for all breeds in one analysis. Unknown parent groups (UPG) or metafounders (MF) can be used to address missing pedigree information.
View Article and Find Full Text PDFFood Chem
December 2024
School of Public Health, Lanzhou University, Lanzhou 730000, China; Institute of Animal Husbandry and Veterinary, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China. Electronic address:
Ghee, a traditional fermented dairy product and dietary staple for inhabitants of the Tibet Plateau, has unclear lipid profiles and flavor formation mechanisms. This study aims to characterize superior ghee varieties and elucidate factors driving the production of beneficial lipids and flavor compounds. Through a comprehensive analysis of lipidomic profiles, volatile organic compound (VOC) release and microbial dynamics during ghee production from Holstein milk (HM) and Jersey milk (JM), A total of 126 differential lipids were identified, primarily associated with glycerophospholipid and sphingolipid metabolism.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia.
Homozygosity, which can arise from several genetic mechanisms including inbreeding, is frequently observed in the offspring of related parents. This inbreeding can lead to a reduced performance, due to a phenomenon known as inbreeding depression. This study assessed inbreeding depression using whole genome and regional approaches in first-lactation Australian Holsteins and Jerseys, involving approximately 33,000 Holstein and 7,000 Jersey cows born between 2000 and 2017.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
Center for Quantitative Genetics and Genomics, Aarhus University, C. F. Møllers Allé 3, 8000 Aarhus C, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!